

www.scielo.cl

Andes pediatr. 2024;95(4):381-388 DOI: 10.32641/andespediatr.v95i4.4931

ORIGINAL ARTICLE

Estimation of cardiorespiratory fitness from the Six-Minute Walk Test in schoolchildren

Estimación de aptitud cardiorrespiratoria a partir de la Prueba de Caminata de Seis Minutos en escolares

Jaime Andrés Vásquez-Gómez^{® a,g,h}, Francisco Andrés Vivero-Valdés^{® b,c,h,i}, Luis Felipe Rojas-Araya^{® d,e,h}, César Patricio Faúndez-Casanova^{® f,g,h}, Marcelo Eduardo Castillo-Retamal^{® f,g,h}

ⁱKinesiólogo.

Received: August 28, 2023; Approved: March 18, 2024

What do we know about the subject matter of this study?

Cardiorespiratory fitness is low in children and adolescents. Exercise capacity can be assessed with the six-minute walk test. Studies have elaborated equations to predict the distance covered. None propose equations to predict cardiorespiratory fitness in our context.

What does this study contribute to what is already known?

The six-minute walk test is an instrument that is easy to apply and has a low cost. Applying the six-minute walk test to assess cardiorespiratory fitness in the school setting is plausible. The best prediction models for cardiorespiratory fitness included distance, age, weight, height, heart rate, and body mass index.

Abstract

Cardiorespiratory fitness can be assessed by direct, indirect, maximal, and moderate effort, running, cycling, or walking methods. **Objective:** To predict maximum oxygen consumption ($\dot{V}O_2$ max) from the six-minute walk test in schoolchildren. **Patients and Method:** 459 students were included, 215 were male and 244 were female, aged 11.9 \pm 1.3 years. Basic anthropometry and cardiorespiratory fitness were measured using field tests. Multivariate equations were developed to predict the $\dot{V}O_2$ max using the R® Commander v. 4.2.2 software (p < 0.05). **Results:** The best model predicting $\dot{V}O_2$ max include distance walked in the six-minute walk test, heart rate recovery, age, height, body weight

Keywords:

Cardiorespiratory Fitness; Oxygen Consumption; Walking Test; Exercise Test; Children

Correspondence: Marcelo Castillo Retamal mcastillo@ucm.cl Edited by: Pablo Cruces Romero

How to cite this article: Andes pediatr. 2024;95(4):381-388. DOI: 10.32641/andespediatr.v95i4.4931

^aCentro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule. Talca, Chile.

^bCentro de Formación Técnica San Agustín. Linares, Chile.

^cMagíster en Neurociencia, Universidad Católica del Maule. Talca, Chile.

^dUniversidad de León. León, España.

^eDepartamento de Educación, de la Ilustre Municipalidad de Curicó. Curicó, Chile.

^fDepartamento de Ciencias de la Actividad Física, Universidad Católica del Maule. Talca, Chile.

⁹Laboratorio de Rendimiento Humano, Universidad Católica del Maule. Talca, Chile.

^hProfesor de Educación Física.

 $(\dot{V}O_2max~[L\cdot min^{-1}] = -0.0902 + (-0.0464 \times age) + (0.0002 \times distance) + (-0.0019 \times HR) + (0.5843 \times height) + (0.0353 \times weight), R^2 = 0.76; error = 0.25~L\cdot min^{-1}))$, and also body mass index $(\dot{V}O_2max~[L\cdot min^{-1}] = -0.6152 + (0.0399 \times age) + (0.0933 \times BMI) + (0.0005 \times distance) + (-0.0022 \times HR),$ $R^2 = 0.57;$ error = 0.34 $L\cdot min^{-1}$), both with p < 0.001. **Conclusions:** Cardiorespiratory fitness can be estimated based on basic anthropometry and performance on the six-minute walk test.

Introduction

Cardiorespiratory fitness has declined in recent years in Latin American children and adolescents¹, with a prevalence of physical activity insufficiency between 84.2% and 91.2% in Chilean children and adolescents². Cardiorespiratory fitness is a component of physical fitness that involves the uptake, transport, and utilization of oxygen, and activates the heart, pulmonary and systemic circulation, and skeletal musculature during physical exercise³⁻⁶. Cardiorespiratory fitness is important during childhood because it is a predictor of cardiometabolic risk in adolescence⁷, and its stimulation or development in childhood can be related to good health in adulthood^{8,9}.

Cardiorespiratory fitness can be assessed directly in the laboratory, but its high cost limits its use in epidemiology and the school context¹⁰, although it can also be performed with field tests. One of these is the *Course-Navette* test, which is widely used in young people¹⁰, and another is the Six-Minute Walk Test (SMWT), which is submaximal and is used to assess distance traveled and exercise capacity¹¹. In addition, it is reported to be a good instrument to apply to elementary school children and even to children with different diseases¹¹.

Systematic reviews in children and adolescents propose reference values¹² and equations that allow predicting the distance walked in the SMWT^{13,14}. In Chile, some studies propose prediction formulas for the meters walked in the SMWT in children from 6 to 14 years of age¹⁵ and in adolescents of 16 years of age on average16. For more than 20 years, results of SMWT in healthy children from 6 to 14 years of age have been published¹⁷, but none so far has developed equations that address cardiorespiratory fitness. In this context, it is of interest to generate an estimation model since this variable reflects the cardiorespiratory fitness of students. It is equally important because of the practical usefulness and the scope that this evaluation tool can have for physical activity and health professionals. The primary objective is to determine the performance in the SMWT and relate it to the aerobic power of the Course-Navette test, with demographic, anthropometric, and physical activity variables, and as a secondary objective, to verify its incidence in the prediction of VO₂max in second cycle primary education students of the Maule Region, Chile.

Patients and Method

Observational cross-sectional study. Male and female students from different schools of the second cycle of primary education in the Maule Region, Chile, all in urban areas, participated. The sample was purposive or non-probabilistic, totaling 456 children aged 11.9 ± 1.3 years (table 1). Formal and regular students from their schools were included, apparently healthy and without injuries in the musculoskeletal system such as contusions, sprains, "physical disability", fractures, etc., or any other type of physical impairment that would limit the development of the tests. Parents/ guardians/responsible parties signed a consent form and informed assent from the students to participate in the study. The research was approved by the Scientific Ethics Committee of the Universidad Católica del Maule (Act No. 186 / 2018). In addition, the study followed the guidelines of the Declaration of Helsinki.

In consecutive sessions, weight, height, and body mass index (BMI) were measured, then the SMWT was administered in 30-meter corridors¹⁸ in which the distance traveled was counted, recovery heart rate (HR) was measured by individual carotid palpation, and subjective sensation of fatigue (RPE) was recorded¹². After approximately 10 minutes, the *Course-Navette* test was applied where the last completed period was counted to calculate the $\dot{V}O_2$ max^{1,19}, and the RPE was recorded with the EPInfant Scale^{12,20}. Only the PAQ-C questionnaire²¹ was applied preliminarily in a subgroup of students to determine the level of physical activity (PA).

The response or exposure variable was $\dot{V}O_2$ max, and the independent or exploratory variables were the demographic variables of age, basic anthropometric variables of body weight, height, BMI, SMWT performance of distance traveled, and heart rate.

In the statistical analysis, mean values and standard deviation were calculated for continuous variables and percentages for categorical variables, the normality distribution of the data was also verified, and boys and girls were compared concerning basic anthropom-

etry, cardiorespiratory fitness in the Course-Navette test and the SMWT between boys and girls with the Kruskal-Wallis test. In addition, the prevalence of gender (male, female) on the level of PA was evaluated with the Chi-square test. Partial correlations were performed between Course-Navette's VO2max and independent variables, and then linear regression models were performed having as dependent variable the Course-Navette's VO2max, and as independent variables the SMWT performance, basic anthropometric, and demographic variables. The validity of the models was verified with the Bland-Altman diagram including confidentiality ranges of \pm 1.96. The analysis was performed with the R Commander® software version 4.2.2 (New Zealand) considering a statistical significance of p < 0.05.

Results

Table 1 shows that of the total participants (N = 59), there were no differences between males (n = 215) and females (n = 244) in demographic and basic anthropometric variables (age, weight, height, BMI), SMWT performance (distance covered, heart rate, perceived exertion), and *Course-Navette* test (period, speed, $\dot{V}O_2$ max, perceived exertion). In addition, it is shown that most students in the subgroup examined had a moderate level of PA and that there was insufficient evidence to claim that the gender of the students (male or female) determined the level of PA (43 students were eliminated because of incomplete data).

Table 2 shows the partial correlations between $\dot{V}O_2$ max and the independent variables. There were positive and significant correlations between $\dot{V}O_2$ max, demographic variables (except age in females), and basic anthropometric variables. A negative relationship was also observed between $\dot{V}O_2$ max and SMWT performance (except positive with distance) in the whole sample. Regarding the *Course-Navette* test performance, the association of $\dot{V}O_2$ max with RPE was inverse for the total participants.

In the sample of 459 students, the best predictive model included distance traveled (meters) at SMWT (p = 0.02), recovery HR (b-min⁻¹) 20 seconds post-walk, age in years, body weight in kg (all with p < 0.001), and height in meters (p = 0.001). There was no difference in estimated $\dot{V}O_2$ max between males and females (p = 0.1571), then:

 $\dot{V}O_2$ max (L·min⁻¹) = -0.0902 + (-0.0464 × age) + (0.0002 × distance) + (-0.0019 × recovery HR) + (0.5843 × height) + (0.0353 × weight)

[Equation 1]

The statistics were: r = 0.87; $R^2 = 0.76$; p < 0.001 and estimation error = 0.25 L·min⁻¹.

The incidence of BMI in kg·m⁻² on cardiorespiratory fitness was verified. This was statistically significant within the model as were the other variables (p < 0.01) but obtained slightly lower statistical values (r = 0.75; R² = 0.57; p < 0.001) and higher estimation error (0.34 L·min⁻¹), although there was no difference between males and females when predicting $\dot{V}O_2$ max (p = 0.4312), then:

 $\dot{V}O_2$ max (L·min⁻¹) = -0.6152 + (0.0399 × age) + (0.0933 × BMI) + (0.0005 × distance) + (-0.0022 × recovery HR)

[Equation 2]

For the subgroup of 172 participants, the level of PA was included in a linear model (r = 0.89; $R^2 = 0.79$; p < 0.001). In addition, distance, HR, body weight, age, and height presented statistical significance within the model (p < 0.05), except for the PA level itself (p = 0.55).

Also, the Bland-Altman plot (figure 1) showed that in equation [1], 27 pairs of the $\dot{V}O_2$ max (5.9%) were outside the limits of agreement of the model, and the average bias was close to zero (0.049 L·min⁻¹) with confidence intervals (95%) of 0.017 - 0.064. For equation [2], only 22 pairs (4.8%) fell outside the limits and the bias was 0.046 L·min⁻¹ (95%CI [-0.338; -0.275]).

Discussion

The main contribution of this research is that it has been possible to develop a model to predict $\dot{V}O_2$ max in schoolchildren in a specific context in Chile, based on variables that are accessible to measure, noninvasive, and that the walking test does not require strenuous or maximal physical exertion. In addition, the level of PA is potentially predictive of $\dot{V}O_2$ max.

Some research studies have addressed SMWT and determined the relationship with cardiopulmonary fitness in children and adolescents of different characteristics. In these, it has been reported that distance traveled was directly and significantly related to $\dot{V}O_2$ max (r = 0.72) in healthy girls and boys of 10 years of age on average²². The same was true (0.31 to 0.69) in male and female adolescents with intellectual disability aged 16 years²³ and in adolescents aged 13 to 18 years with pulmonary hypertension in whom SMWT velocity was significantly related (r = 0.59) to $\dot{V}O_2$ max²⁴. In obese children, body weight, fat mass, and BMI were inversely and significantly associated with maximal oxygen consumption (r = -0.26 to -0.38), and fat-free

	Total	(459)	Male	(215)	Female	e (244)	
Variables	Mean	SD	Mean	SD	Mean	SD	p-value
Age (years)	11.9	1.3	11.9	1.3	11.8	1.4	0.244
Weight (kg)	51.3	12.2	52.1	12.9	50.6	11.4	0.209
Height (m)	1.52	0.09	1.53	0.1	1.51	0.08	0.556
BMI (kg·m ⁻²)	21.9	3.9	22	4	21.8	3.9	0.575
SMWT							
Distance (m)	656.9	93.3	650	100.4	663	86.4	0.211
HR (b·min⁻¹)	113	30	111	28	115	31	0.353
HR (%)	54.2	14.2	53.4	13.6	55	14.8	0.377
RPE	5	2	5	2	5	2	0.632
Course Navette							
Period	3.1	1.5	3.1	1.7	3	1.4	0.734
Speed (km·h ⁻¹)	9.3	0.9	9.3	1	9.3	0.9	0.984
VO₂max (ml·kg·min-1)	39.7	4.9	39.7	4.9	39.6	5	0.897
VO₂max (L·min⁻¹)	2	0.5	2	0.5	1.9	0.4	0.235
RPE	8	2	8	1	8	2	0.127
PAQ-C (PA level)	n (172)	%	n (97)	%	n (75)	%	0.29
Very low	0	0	0	0	0	0	
Low	17	9.9	10	10.3	7	9.3	
Moderate	107	62.2	55	56.7	52	69.3	
High	44	25.6	30	30.9	14	18.7	
Intense	4	2.3	2	2.1	2	2.7	

^adifferences between male and female; HR (%): percentage of heart rate; HR: post-walk recovery heart rate; PA: physical activity; PAQ-C: Physical Activity Questionnaire for Children; RPE: rate of perceived exertion with the Epinfant Scale; SD: standard deviation; SMWT: Six-Minute Walk Test; VO₂: maximal oxygen consumption.

Variables	VO₂max (L·min⁻¹)				
	Total (459)	Male (215)	Female (244)		
Age (years)	0.22**	0.34**	0.09		
Weight (kg)	0.85**	0.87**	0.82**		
Height (m)	0.59**	0.69**	0.46**		
BMI (kg·m-2)	0.72**	0.69**	0.75**		
SMWT					
Distance (m)	0.1*	0.05	0.14*		
HR (b·min-1)	-0.11*	-0.12	-0.05		
HR (%)	-0.1*	-0.1	-0.04		
RPE	-0.23**	-0.33**	-0.14*		
Course Navette					
Period	0.39**	0.41**	0.37**		
Speed (km·h-1)	0.41**	0.44**	0.41**		
RPE	-0.17**	-0.25**	-0.09		

HR (%): percentage of heart rate; HR: post-walk recovery heart rate; RPE: rate of perceived exertion with the Epinfant Scale; SMWT: Six-Minute Walk Test. *< 0.05; **< 0.001

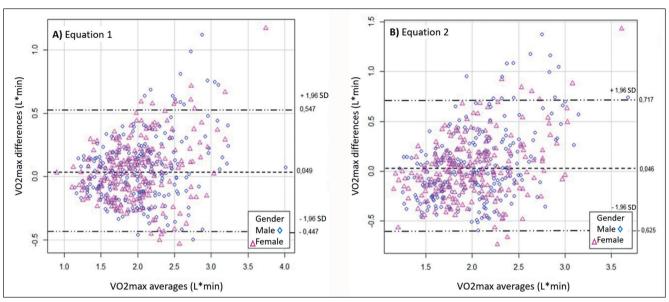


Figure 1. Bland-Altman diagram. Degrees of agreement for VO_2 max between the cardiorespiratory test (Course Navette) and the predictive equations. Y-axis: Differences in $\dot{v}O_2$ (L·min-1). X-axis: Averages of $\dot{v}O_2$ (L·min-1).

mass and distance in SMWT were also directly and significantly associated (r = 0.22 to 0.24)²⁵. We highlight these characteristics of the participants as the measurement of cardiorespiratory fitness and SMWT ranges from the clinical setting to apparently healthy children performing in schools, as there are variables that are commonly measured which are potentially predictors of $\dot{V}O_2$ max, as described in our study.

Regarding research that has developed models to estimate VO2max in children, one study has incorporated distance covered in SMWT and BMI in 12-yearold children on average26 in which, in addition age (r = 0.11; p < 0.05), body weight (r = -0.36; p < 0.001), and HR (r = -0.12; p < 0.05) at the end of the walking test, were significantly related to VO2 max obtained in a stress test. Another research has worked with obese children with an average age of 13 years where they have performed the prediction of $\dot{V}O_2$ max from the distance covered in the SMWT and BMI²⁵. Some of the variables that these studies have used coincide with those that we have used with Chilean schoolchildren, such as BMI, and others that did show a relationship with $\dot{V}O_2$ max we included in the predictive models (age, weight, and HR).

We should point out that an important variable is the level of PA that we incorporated to relate to $\dot{V}O_2$ max. On this point, a significant relationship of $\dot{V}O_2$ max with PA (in steps/week) has been found²⁶ and, in another study²⁷, they included PA by self-report in a predictive equation for distance in SMWT in girls.

This evidence indicates that it is plausible to include PA performed by schoolchildren as an explanatory variable for cardiopulmonary fitness.

The implication of this study in the clinical aspect is justified by the relevance of maximal oxygen consumption being associated with cardiometabolic diseases, basic anthropometry, and lifestyles, treated in the public health system of the population²⁸⁻³². So much so, that oxygen consumption has been cataloged as an input variable in the clinical evaluation^{33,34}, that is, in the diagnostic evaluation such as the measurement of vital signs and other basic parameters. Besides, the application of the SMWT is transferable and becomes relevant in the clinical setting since it has been used in different populations, whether in adults with lung³⁵ and heart diseases³⁶, vascular accidents³⁷, and, regarding the age group, in children and adolescents with various pathologies³⁸⁻⁴⁰.

Thus, the impact of $\dot{V}O_2$ max in the research and clinical sphere may have a preventive nature in the development of cardiometabolic diseases and, at the same time, as a complement to the treatment of these pathologies, considering the general repercussions on cardiorespiratory fitness that we could find in children and adolescents in this post-pandemic stage, and particularly in those who were affected by the pediatric inflammatory multisystem syndrome associated with COVID-19⁴¹. The latter is very relevant since evidence has shown that cardiorespiratory fitness had a significant decrease between September

2019 and September 2020 in school children aged 7 to 10 years, and then increased slightly or remained unchanged until June 2021⁴², therefore, it is pertinent to have accessible means to assess VO₂max and can provide methods for its development in the child population.

A limitation of this study is that VO2max was determined with an indirect method such as the Course-Navette test and not a laboratory criterion test. However, there is considerable evidence reporting the reliability and validity of that test for estimating VO2max in children and adolescents in Chile, Latin America, and worldwide^{1,4,10}. On the other hand, in the subgroup of students, the level of PA was measured through a questionnaire (PAQ-C) which could overor underestimate the perception⁴³ of the students' performance of PA. Another limitation is the fact that it is not possible to assume a cause-effect relationship between the variables studied since it was a crosssectional study, for example, despite demonstrating an incidence of BMI on cardiorespiratory fitness with this methodological design, it is not possible to accept such a causal association. On the other hand, one of its strengths was that it was one of the first studies on this subject in Chile and that it had a large number of participants.

The projections of the research are to evaluate $\dot{V}O_2$ max with a direct method, a gold standard as a criterion, and thus access more variables associated with $\dot{V}O_2$ max (ventilatory thresholds and gas exchange), in the students who are the subject of this research. In addition, and jointly, to perform a longitudinal study to evaluate the consistency and reproducibility of the associations between oxygen consumption and the covariates investigated in this study, plus the association with other cardiometabolic variables, basic anthropometry, and lifestyles.

Finally, as the variables of distance covered in SMWT, recovery HR, age, height, body weight, and BMI are predictors of $\dot{V}O_2$ max, the equations developed in this study could be applied in populations with similar characteristics to have an approximation of cardiorespiratory fitness, considering the morphofunctional, geographic, and environmental differences, among others, of each specific context for the interpretation of the results.

Conclusions

Cardiorespiratory fitness determined with indirect method and expressed as $\dot{V}O_2$ max is related to SMWT performance specifically with distance and post-walk HR, also with basic anthropometry (weight and BMI), age, and with lifestyles such as PA level in the school-children who participated in the study.

Ethical Responsibilities

Human Beings and animals protection: Disclosure the authors state that the procedures were followed according to the Declaration of Helsinki and the World Medical Association regarding human experimentation developed for the medical community.

Data confidentiality: The authors state that they have followed the protocols of their Center and Local regulations on the publication of patient data.

Rights to privacy and informed consent: The authors have obtained the informed consent of the patients and/or subjects referred to in the article. This document is in the possession of the correspondence author.

Conflicts of Interest

Authors declare no conflict of interest regarding the present study.

Financial Disclosure

Authors state that no economic support has been associated with the present study.

Acknowledgments

The authors thank all participants who were part of the research, as well as their parents/guardians/caregivers who agreed to the authorization.

References

- Prieto-Benavides DH, García-Hermoso A, Izquierdo M, et al. Cardiorespiratory fitness cut-points are related to body adiposity parameters in Latin American adolescents. Medicina. 2019;55(9):508. doi: 10.3390/medicina55090508.
 PMID: 31438456.
- Guthold R, Stevens GA, Riley LM, et al. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Health. 2019;21:1-13. doi: 10.1016/S2352-4642(19)30323-2. PMID: 31761562.
- Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334– 59. doi: 10.1249/MSS.0b013e318213fefb. PMID: 21694556
- Tomkinson GR, Lang JJ, Tremblay MS, et al. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–54. doi: 10.1136/bjsports-2016-095987. PMID: 27208067.
- Machado N, Wingfield M, Kramer S, et al. Maintenance of cardiorespiratory fitness in people with stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2022;103(7):1410-1421. e6. doi: 10.1016/j.apmr.2022.01.151. PMID: 35172177.
- Sloan R, Visentini-Scarzanella M, Sawada S, et al. Estimating cardiorespiratory fitness without exercise testing or physical activity status in healthy adults: regression model development and validation. JMIR Public Health Surveill. 2022;8(7):e34717. doi: 10.2196/34717. PMID: 35793133.
- Buchan DS, Knox G, Jones AM, et al. Utility of international normative 20 m shuttle run values for identifying youth at increased cardiometabolic risk. J Sports Sci. 2019;37(5):507-514. doi: 10.1080/02640414.2018.1511318. PMID: 30113241.
- García-Hermoso A, Ramírez-Vélez R, García-Alonso Y, et al. Association of cardiorespiratory fitness levels during youth with health risk later in life: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(10):952-960. doi: 10.1001/jamapediatrics.2020.2400. PMID: 32870243.
- Isasi CR, Strizich GM, Kaplan R, et al. The association of cardiorespiratory fitness with cardiometabolic factors,

- markers of inflammation, and endothelial dysfunction in latino youth: findings from the hispanic community children's health study/study of latino youth. Ann Epidemiol. 2018;28(9):583-589.e3. doi: 10.1016/j.annepidem.2018.02.007. PMID: 29548689.
- Ramírez-Vélez R, García-Hermoso A, Alonso-Martínez AM, et al. Cardiorespiratory fitness normative values in Latin-American adolescents: role of fatness parameters. Int J Environ Res Public Health. 2019;16(20):3889. doi: 10.3390/ijerph16203889. PMID: 31615052.
- 11. Vandoni M, Correale L, Puci MV, et al. Six minute walk distance and reference values in healthy Italian children:
 A cross-sectional study. PloS One.
 2018;13(10):e0205792. doi: 10.1371/journal.pone.0205792. PMID: 30321226.
- Rodríguez-Núñez I, Mondaca F, Casas B, et al. Valores normales del test de marcha de 6 minutos en niños y adolescentes sanos: una revisión sistemática y metaanálisis. Rev Chil de Pediatr. 2018;89(1):128-36. doi: 10.4067/S0370-41062018000100128. PMID: 29664515.
- 13. Mylius CF, Paap D, Takken T.
 Reference value for the 6-minute
 walk test in children and adolescents:
 a systematic review. Expert Rev
 Respir Med. 2016;10(12):1335-52.
 doi: 10.1080/17476348.2016.1258305.
 PMID: 27817221.
- Cacau LDAP, Santana-Filho VJD, Maynard LG, et al. Reference values for the six-minute walk test in healthy children and adolescents: a systematic review. Braz J Cardiovasc Surg. 2016;31(5):381-8. doi: 10.5935/1678-9741.20160081. PMID: 27982347.
- Gatica D, Puppo H, Villarroel G, et al. Valores de referencia del test de marcha de seis minutos en niños sanos. Rev Med Chil. 2012 140;(8):1014-21. doi: 10.4067/S0034-98872012000800007. PMID: 23282774.
- 16. Vásquez-Gómez JA, Rojas-Araya LF, Castillo-Retamal ME. La prueba de caminata de seis minutos relacionada con variables del estado nutricional, antropométricas y de actividad física en adolescentes chilenos. Rev Esp Nutr Comunitaria. 2018;24(4):2.
- Escobar Cabello M, López Suárez CA, Véliz Medina C, et al. Test de marcha en 6 minutos en niños chilenos sanos. Kinesiología. 2001;62, 16-20.
- ATS Committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111-7. doi: 10.1164/ajrccm.166.1.at1102. PMID: 12091180.

- Léger LA, Mercier D, Gadoury C, et al. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93-101. doi: 10.1080/02640418808729800. PMID: 3184250.
- Rodríguez Núñez I. Escala de medición de esfuerzo percibido infantil (EPInfant): validación en niños y adolescentes chilenos. Rev Chil Pediatr. 2016;87(3):211-2. doi: 10.1016/j. rchipe.2015.09.001. PMID: 26455705.
- Manchola-González J, Bagur-Calafat C, Girabent-Farrés M. Fiabilidad de la versión española del cuestionario de actividad física PAQ-C. Rev Int Med Cienc Act Fis Deporte. 2017;17(65):139-52. doi: 10.15366/rimcafd2017.65.008.
- 22. Limsuwan A, Wongwandee R, Khowsathit P. Correlation between 6-min walk test and exercise stress test in healthy children. Acta Paediatr. 2010;99(3):438-41. doi: 10.1111/j.1651-2227.2009.01602.x. PMID: 19922506.
- 23. Elmahgoub SS, Van de Velde A, Peersman W, et al. Reproducibility, validity and predictors of six-minute walk test in overweight and obese adolescents with intellectual disability. Disabil Rehabil. 2012;34(10):846-51. doi: 10.3109/09638288.2011.623757. PMID: 22149772.
- Zapico A, Fuentes D, Rojo-Tirado M, et al. Predicting peak oxygen uptake from the 6-minute walk test in patients with pulmonary hypertension. J Cardiopulm Rehabil Prev. 2016;36(3):203-8. doi: 10.1097/HCR.000000000000174. PMID: 26959496.
- 25. Vanhelst J, Fardy P, Salleron J, et al. The six-minute walk test in obese youth: reproducibility, validity, and prediction equation to assess aerobic power. Disabil Rehabil. 2013;35(6):479-82. doi: 10.3109/09638288.2012.699581. PMID: 22779759.
- Jalili M, Nazem F, Sazvar A, et al.
 Prediction of maximal oxygen uptake by
 six-minute walk test and body mass index
 in healthy boys. J Pediatr. 2018;200:155 9. doi: 10.1016/j.jpeds.2018.04.026.
 PMID: 29773305.
- Ulrich S, Hildenbrand FF, Treder U, et al. Reference values for the 6-minute walk test in healthy children and adolescents in Switzerland. BMC Pulm Med. 2013;13(1):49. doi: 10.1186/1471-2466-13-49. PMID: 23915140.
- Cáceres JM, Ulbrich AZ, Panigas TF, et al. A non-exercise prediction model for estimation of cardiorespiratory fitness in adults. Brazilian Journal of Kinanthropometry and Human Performance. 2012;14(3):287-95. doi: 10.5007//1980-0037.2012v14n3p287
- 29. de Souza e Silva CG, Kaminsky A,

- Arena R, et al. A reference equation for maximal aerobic power for treadmill and cycle ergometer exercise testing: analysis from the FRIEND registry. Eur J Prev Cardiol. 2018;25(7):742-50. doi: 10.1177/2047487318763958. PMID: 29517365.
- Peterman JE, Harber MP, Imboden MT, et al. Accuracy of nonexercise prediction equations for assessing longitudinal changes to cardiorespiratory fitness in apparently healthy adults: BALL ST Cohort. J Am Heart Assoc. 2020;9:e015117. doi: 10.1161/ JAHA.119.015117. PMID: 32458761.
- 31. Vásquez-Gómez JA, Garrido-Méndez A, Matus-Castillo C, et al. Fitness cardiorrespiratorio estimado mediante ecuación y su caracterización sociodemográfica en población chilena: Resultados de la Encuesta Nacional de Salud 2016-2017. Rev Med Chil. 2020;148(12):1750-58. doi: 10.4067/S0034-98872020001201750. PMID: 33844740.
- 32. Myers J, Kaminsky LA, Lima R, et al. A reference equation for normal standards for VO2 max: analysis from the Fitness Registry and the Importance of Exercise National Database (FRIEND Registry). Prog Cardiovasc Dis. 2017;60(1):21-9. doi: 10.1016/j.pcad.2017.03.002. PMID: 28377168.
- Ahmed I. COVID-19 does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin Med

- (Lond). 2020;20(3):282–4. doi: 10.7861/ clinmed.2020-0111. PMID: 32327405
- Mihalick V, Canada J, Arena R, et al. Cardiopulmonary exercise testing during the COVID-19 pandemic. Prog Cardiovasc Dis. 2021;67:35–9. doi: 10.1016/j.pcad.2021.04.005. PMID: 33964290.
- Tueller C, Kern L, Azzola A, et al. Six-minute walk test enhanced by mobile telemetric cardiopulmonary monitoring. Respiration. 2010;80(5):410-8. doi: 10.1159/000319834. PMID: 20699610.
- Costa HS, Lima MM, Alencar MC, et al. Prediction of peak oxygen uptake in patients with chagas heart disease: Value of the six-minute walk Test. Int J Cardiol. 2017;228:385-87. doi: 10.1016/j. ijcard.2016.11.259. PMID: 27866032.
- Pang MY, Eng JJ, Dawson AS.
 Relationship between ambulatory capacity and cardiorespiratory fitness in chronic stroke: influence of stroke-specific impairments. Chest. 2005;127(2):495-501. doi: 10.1378/chest.127.2.495.
 PMID: 15705987.
- 38. Elmahgoub SS, Van de Velde A,
 Peersman W, et al. Reproducibility,
 validity and predictors of six-minute
 walk test in overweight and obese
 adolescents with intellectual disability.
 Disabil Rehabil. 2012;34(10):846-51.
 doi: 10.3109/09638288.2011.623757.
 PMID: 22149772.
- 39. Vanhelst J, Fardy PS, Salleron J, et al. The six-minute walk test in obese

- youth: reproducibility, validity, and prediction equation to assess aerobic power. Disabil Rehabil. 2013;35(6):479-82. doi: 10.3109/09638288.2012.699581. PMID: 22779759.
- Zapico AG, Fuentes D, Rojo-Tirado MA, et al. Predicting peak oxygen uptake from the 6-minute walk test in patients with pulmonary hypertension. J Cardiopulm Rehabil Prev. 2016;36(3):203-8. doi: 10.1097/HCR.0000000000000174. PMID: 26959496.
- Alvarado-Gamarra G, Del Aguila O, Dominguez-Rojas J, et al. Fenotipos clínicos del síndrome inflamatorio multisistémico pediátrico asociado a COVID-19 (SIM-C). Andes Pediatr. 2022;93(6):841-850. doi: 10.32641/andespediatr.v93i6.4084. PMID: 37906801.
- 42. Jarnig G, Kerbl R, van Poppel MNM. The impact of COVID-19-related mitigation measures on the health and fitness status of primary school children in Austria: a longitudinal study with data from 708 children measured before and during the ongoing COVID-19 pandemic. Sports. 2022;10(3):43. doi: 10.3390/sports10030043. PMID: 35324652.
- 43. Petermann-Rocha F, Brown RE,
 Diaz-Martínez X, et al. Association
 of leisure time and occupational
 physical activity with obesity and
 cardiovascular risk factors in Chile.
 J Sports Sci. 2019;37(22):2549-59.
 doi: 10.1080/02640414.2019.1647738.
 PMID: 31366283.