

REVISTA CHILENA DE PEDIATRÍA

www.scielo.cl

www.revistachilenadepediatria.cl

Rev Chil Pediatr. 2017;88(4):511-516 DOI: 10.4067/S0370-41062017000400011

CASO CLÍNICO

Enfermedad peroxisomal, condrodisplasia rizomelica punctata tipo 1, reporte de caso

Peroxisomal disorder, rhizomelyc chondrodysplasia punctata type 1, case report

Cesar Leonardo González-Ortiz^a, Sandra Bibiana Jaimes Leguizamón^b, Gustavo Adolfo Contreras-García^c

^aMédico. Grupo de Investigación en Genética Humana UIS, Facultad de Salud, Universidad Industrial de Santander. Bucaramanga, Colombia ^bMédica. Clínica Materno Infantil San Luis. Bucaramanga, Colombia

'Médico. Especialista en Genética Médica. Especialista en Bioética. Grupo de Investigación en Genética Humana UIS, Departamento de Ciencias Básicas, Facultad de Salud, Universidad Industrial de Santander, Departamento de Pediatría-Hospital Universitario de Santander. Bucaramanga, Colombia

Recibido el 30 de junio de 2016; aceptado el 19 de noviembre de 2016

Resumen

Introducción: Las enfermedades peroxisomales son un grupo de trastornos monogénicos que incluyen desórdenes en la biogénesis del peroxisoma o deficiencias enzimáticas. La Condrodisplasia Rizomélica Punctata Tipo 1 (RCDP1) pertenece al primer grupo, es autosómica recesiva originada por mutaciones del gen PEX7, que codifica para el receptor PTS2. El objetivo del presente artículo son describir una enfermedad genética de baja prevalencia, explicando sus principales características y la importancia de la aproximación diagnóstica y asesoría genética. Caso clínico: Lactante masculino de 13 meses, sin antecedentes familiares ni consanguinidad. Al nacimiento presentaba acortamiento de miembros superiores. Fue intervenido a los 7 meses por catarata bilateral. Presentaba severo retardo del crecimiento, retraso del desarrollo psicomotor, anomalías menores craneofaciales, acortamiento rizomélico de miembros superiores y en menor grado de miembros inferiores. En la radiografía se identificaban calcificaciones punteadas del cartílago en rótula. Entre los exámenes de laboratorio destacaba elevación de los ácidos grasos fitánico y pristánico. El paciente falleció a la edad de 3 años. Discusión: Esta es una enfermedad rara, la prevalencia es 1/100.000, se han descrito diferentes mutaciones del gen PEX7 teniendo variación en el fenotipo. El tratamiento es básicamente sintomático y depende de la gravedad de las manifestaciones clínicas, el tipo rizomélico es de mal pronóstico, la mayoría de los pacientes no sobrevive antes de la primera década de vida. La asesoría genética es fundamental ya que se considera un riesgo del 25% de recurrencia.

Palabras clave: Condrodisplasia punctata, enfermedades peroxisomales, gen PEX7, osteocondrodisplasia

Abstract

Introduction: Peroxisomal diseases are a group of monogenic disorders that include defects in peroxisome biogenesis or enzyme dificiencies. Rhizomelic chondrodysplasia punctata type 1 (RCDP1) belongs to the first group, caused by autosomal recessive mutations on PEX7 gene, encoding for PTS2 receptor. The aims of this report are to describe a genetic disease of low prevalence, explaining its main characteristics and the importance of the diagnostic approach and genetic counseling. **Case report:** 13-month-old male infant with no medical history, family or consanguinity, demonstrate at birth upper limbs shortening. Surgery intervention at seven months old for bilateral cataract. Growth retardation, psychomotor retardation, minor craniofacial anomalies, rhyzomelic shortened upper limbs and lower limbs lesser degree. Punctata calcifications in patella cartilage. Also fatty acid phytanic and pristanic increased levels. Patient dead at age of 3 years. **Discussion:** RCDP1 is a rare disease, with a prevalence of 1/100,000. Different mutations of PEX7 gene have been described, with variations in phenotype. The treatment is basically symptomatic and depends on the severity of clinical manifestations. The rhizomelic type has poor prognosis, most patients do not survive before the first decade of live. Genetic counseling is essential because it is consider a 25% risk of recurrence.

Keywords:

Chondrodysplasia punctate, peroxisomal disorders, PEX7 gene, osteochondrodysplasia

Introducción

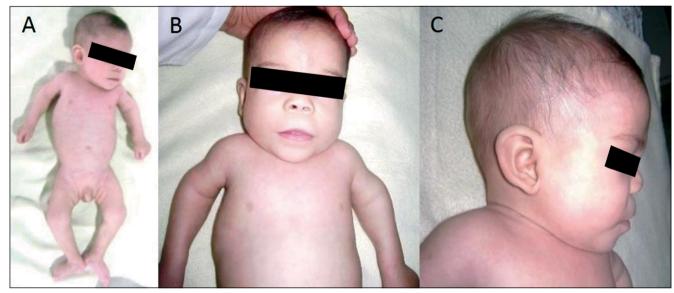
Los peroxisomas son organélos celulares presentes en todas las células del organismo, excepto algunas como los eritrocitos. Poseen membranas sencillas, existen en su interior más de 50 enzimas que participan en diferentes procesos metabólicos, entre estos se encuentran la biosíntesis de ácidos biliares, éter fosfolípidos (plasmalógenos) y oxidación de algunos ácidos grasos de cadena muy larga entre otros¹⁻³.

La biogénesis de los peroxisomas sigue dos mecanismos básicos: el de crecimiento y división, o el de ensamble a partir de vesículas pre-peroxisomales. Los genes PEX codifican para una serie de proteínas denominadas peroxinas, esenciales en el proceso de formación de los peroxisomas. Entre ellas se encuentran las proteínas receptoras de péptidos de señalización peroxisomal (peroxisomal targeting signal): PTS1 y PTS2, que median la importación de proteínas al peroxisoma^{4,5}.

Las proteínas de matriz incorporadas al peroxisoma se sintetizan en el citosol, y simultáneamente son importadas por medio de un complejo enzima-receptor. Existen dos vías en este proceso que son dependientes de péptidos de señalización peroxisomal: la primera se trata de un péptido pequeño frecuentemente unido al extremo de la secuencia SKL de la región C terminal de la mayoría de las proteínas de matriz peroxisomal (peroxisomal targeting signal type 1, PTS1); la segunda se trata de un nonapéptido (secuencia de 9 aminoácidos) degenerado presente en el extremo amino terminal de algunas proteínas de matriz peroxisomal (peroxisomal targeting signal type 2, PTS2). El receptor PTS2 codificado por el gen PEX7, en condiciones normales identifica la secuencia PTS2 y forma un complejo enzima-receptor en conjunto con el receptor PEX5 (PEX5-PEX7-PTS2), permitiendo la traslocación de la enzima del citosol a la matriz peroxisomal para poder ejercer su función. Si bien, el proceso de traslocación de las diferentes proteínas peroxisomales es similar, las fallas en los receptores de estas vías originan trastornos diferentes; para el caso de RCDP1 un defecto en el receptor peroxina 7 genera su fenotipo particular; mutaciones en el gen PEX7 provocan deficiencias en la enzima fitanoil coenzima A (PAHX), al fallar su traslocación a la matriz. Esta enzima participa en la α oxidación de ácidos grasos; con la consecuente acumulación de su sustrato, el ácido fitánico. Otra enzima, la acildihidroxiacetonafosfato sintasa (ADHAPS), también se afecta en la enfermedad, provocando la disminución de su producto, los plasmalógenos⁴⁻⁶.

Las enfermedades peroxisomales se clasifican en dos grandes grupos: por déficit en la biogénesis del organelo o por deficiencia de una sola enzima (1). La condrodisplasia rizomélica punctata tipo 1 (RCDP1) (OMIM: #215100) es una enfermedad genética de tipo autosómica recesiva, con una prevalencia de 1 en 100.000^{7,8}, que se clasifica en el primer grupo de enfermedades peroxisomales⁹.

Las características principales de la enfermedad incluyen calcificaciones tipo punctata en cartílago hialino, catarata congénita, alteraciones en la longitud de miembros, dismorfismo facial; grave retardo del crecimiento y retraso en el desarrollo psicomotor⁷. La mayoría de las muertes por la enfermedad se registran hacia el primer año de vida¹⁰. El diagnóstico se basa en las características clínicas, exámenes de laboratorio dado por pruebas bioquímicas como determinación de ácidos grasos de cadena larga en plasma, niveles de plasmalógeno; y si es posible realizar prueba de diagnóstico molecular.


Este manuscrito tiene como objetivo realizar una revisión detallada de las principales características, al

igual que las consideraciones a tener en cuenta en los diagnósticos diferenciales para esta enfermedad de baja prevalencia. Igualmente resaltar la importancia del diagnóstico temprano en los casos de alteraciones dismorfologicas al nacimiento, especialmente en aquellos que implican malformaciones mayores, ya sean únicas o múltiples. Lograr un diagnóstico preciso permite asesorar a los padres acerca del pronóstico y la posibilidad de recurrencia en futuros embarazos.

Caso clínico

Paciente masculino de 13 meses de edad (figura 1), sin antecedentes de enfermedades familiares de importancia ni consanguinidad parental. Antecedente prenatal de amenaza de aborto y de parto pretérmino, en ecografía al sexto mes se evidenció restricción del crecimiento intrauterino (RCIU). Parto por cesárea en la semana 35, con peso y talla adecuados para la edad gestacional, se evidenció acortamiento de miembros superiores y pobre succión por lo cual permaneció hospitalizado, se realizó ecografía transfontanelar con reporte verbal de anormalidad no especificada.

El paciente fue intervenido quirúrgicamente a los 5 meses por hernia inguinal bilateral y a los 7 meses por catarata bilateral. Dentro de los estudios realizados previos a la primera consulta por genética se encuentran: radiografías de huesos largos mostraron ensanchamiento de metáfisis con acortamiento diafisiario y presencia de calcificaciones tipo punctata (figura 2); resonancia magnética nuclear cerebral que reportó atrofia cortical; ecografía renal que mostró riñones disminuidos de tamaño; ecocardiograma que evidenció

Figura 1. A. Se aprecia Acortamiento rizomélico simétrico de miembros superiores y en menor grado de miembros inferiores, en flexión. **B.** Se observa alopecia, puente nasal ancho, narinas antevertidas, filtrum plano, labio superior delgado. **C.** Hipoplasia mediofacial, puente nasal deprimido, baja implantación de pabellones auriculares.

Figura 2. Proyección anteroposterior comparativa de miembros. **A**. Ambos húmeros muestran significativo acortamiento en relación a huesos del antebrazo y ensanchamiento metafisiario. **B**. Calcificaciones puntiformes en rótula y epífisis distal de fémures, ensanchamiento metafisiario con acortamiento diafisiario femoral (rizomélico).

Tabla 1. Lípidos totales de cadena muy larga y ácidos grasos de cadena ramificada en plasma					
Ácidos grasos	Resultados del paciente ug/ml	Controles normales +/- 1 DE	Ligado a X ALD Hemicigoto +/- 1 DE	Ligado a X ALD Heterocigoto +/- 1 DE	Síndrome de Zellweger +/- 1 DE
C26:0 Hexacosanoico	0,490	0,23 ± 0,09	1,30 ± 0,45	0,68 ± 0,29	3,93 ± 1,50
C26:1	0,230	$0,18 \pm 0,09$	0,34 ± 0,16	$0,23 \pm 0,10$	$4,08 \pm 2,30$
Ácido Fitánico	119,0	< 3,00 ug/ml			
Ácido Pristánico	3,350	< 0,3 ug/ml			
C22:0	7,370	20,97 ± 6,27	18,50 ± 5,10	19,41 ± 4,08	8,66 ± 4,97
C24:0	8,070	17,59 ± 5,36	32,25 ± 8,20	24,89 ± 5,42	17,51 ± 8,64
C22:1(n-9)	0,660	1,36 ± 0,79	1,19 ± 0,66	1,33 ± 0,41	1,73 ± 0,65
C24/C22	1,095	0.84 ± 0.10	1,71 ± 0,23	1,30 ± 0,19	2,07 ± 0,28
C26/C22	0,066	0.01 ± 0.004	0,07 ± 0,03	0.04 ± 0.02	$0,50 \pm 0,16$

Los valores de ácido fitánico y pristánico se encuentran muy elevados, adicionalmente encontramos valores altos de C26:0 y una elevación de la relación C26:22. La relación C24:22 esta discretamente elevada. ALD: adrenoleucodistrofia ligado a X. DE: desviación estándar.

	Ácido pipecólico en plasma del paciente a los 22 meses: 11,5 µmol/L					
Datos para comparación	Plasma (µmol/L)		Orina (µmol/g creatinina)			
normal	Media ± DE	Rango normal	Media ± DE	Rango normal		
Hasta un mes	2,4 ± 1,5 n = 54	(0,1 - 5,3)	26,8 ± 15,2 n = 10	(0,1 - 57,2)		
1 a 6 meses	1,8 ± 1,0 n = 148	(0,1 - 3,9)	24,9 ± 18,7 n = 29	(0,1 - 62,3)		
7 meses a 5 años	1,8 ± 1,2 n = 473	(0,1 - 4,2)	2,5 ± 1,9 n = 66	(0,1 - 6,3)		
> 5 años	1,7 ± 1,1 n = 230	(0,1 - 4,0)	1,5 ± 1,5 n = 26	(0,1 - 4,5)		

comunicación interauricular tipo *ostium secundum* sin repercusión hemodinámica; Cariotipo con bandeo G analizado en 20 metafases: con reporte de 46,XY sin alteraciones numéricas ni estructurales.

Debido a alteraciones referidas, el paciente fue derivado al servicio de Genética Médica con diagnóstico de rasgos dismórficos y retardo psicomotor.

A los 13 meses se identificó bajo peso: 4300 g (<-3 desviaciones estándar (DS)), talla baja: 57 cm (<-3 DS), perímetro cefálico pequeño: 37 cm (percentil (p) < 5) (corregido para la talla), distancia intercantal interna: 2,4 cm (p 50), distancia interpupilar: 3,5 cm (p < 3), distancia intercantal externa: 6 cm (p < 3), segmento superior (SS): 34,5 cm, segmento inferior (SI): 22,5 cm, relación SS/SI: 1,53; *Filtrum*: 1,5 cm (p 50-75); anomalías craneofaciales: microcefalia, alopecia, hipoplasia mediofacial, narinas antevertidas, puente nasal deprimido, *filtrum* largo y plano, labio superior delgado, paladar indemne, pabellones auriculares de baja implantación. Cuello móvil sin lesiones. Acortamiento rizomélico de miembros superiores, además

con camptodactilia y acortamiento rizomélico en menor grado de miembros inferiores, contractura de articulaciones de miembros (figuras 1), hipotonía.

Se estableció sospecha diagnóstica de Condrodisplasia rizomélica punctata por lo cual se realizó cuantificación de ácidos grasos de cadena larga en plasma que reportaron valores elevados de ácidos fitánico y pristánico con lo cual se confirmó el diagnóstico de RCDP1 a la edad de 22 meses, como se muestra en las tablas 1 y 2. Se aclaró el diagnóstico a los padres, indicando pronóstico y asesoría genética. Posterior al diagnóstico el paciente tuvo la evolución natural descrita para esta enfermedad falleciendo a la edad de 3 años por neumonía.

Discusión

Las características para RCDP1 incluyen manifestaciones oculares, hallándose cataratas¹¹; peso y talla bajos con acortamiento rizomélico simétrico⁴, convulsiones, atrofia cortical y cerebelar¹², contracturas congénitas y características faciales dismórficas. Las calcificaciones tipo punctata del cartílago si bien constituyen un hallazgo radiológico clave, son temporales y no se evidenciaran después del primer o segundo año de vida¹³.

Otros hallazgos clínicos son dificultades para la deglución, puente nasal deprimido, hipoplasia maxilofacial, narinas antevertidas, *filtrum* largo; se puede presentar anormalidades en la trompa de Eustaquio, otitis media y perdida de la audición¹⁰. Además son usuales los episodios de apnea e infecciones respiratorias recurrentes. Finalmente, aunque son poco comunes, se pueden presentar defectos congénitos cardiovasculares de tipo estructural.

El paciente del caso presentado cumplía criterios con clínicos y radiológicos compatibles con diagnóstico de condrodisplasia rizomélica punctata. Ciertas características propias del síndrome no estaban presentes, como las convulsiones, ictiosis, hendiduras coronales de las vertebrales. Teniendo en cuenta la variabilidad de expresión reportada en la literatura, las diferencias en la presentación clínica se han tratado de vincular con la correlación genotipo-fenotipo de acuerdo a las mutaciones encontradas; sin embargo, hay pacientes que teniendo la misma mutación varían en algunos signos clínicos, desconociéndose la causa de estas diferencias^{5,7,9}.

En Latinoamérica los reportes de esta enfermedad son escasos, se destacan las dificultades para el diagnóstico debido a la variabilidad de expresión y a fenómenos como la heterogeneidad de loci, lo que dificulta un diagnóstico certero de cada caso particular^{14,15}.

El diagnóstico en su mayoría se realiza con base a criterios clínicos y radiológicos, debido a las dificultades de acceso y económicas de pruebas confirmatorias bioquímicas y moleculares¹⁶. Establecer un diagnóstico certero repercute directamente en el pronóstico, el manejo y la asesoría genética¹⁷.

Los exámenes para la confirmación diagnóstica muestran los efectos metabólicos de la deficiencia de al menos 4 enzimas peroxisomales, se busca establecer bioquímicamente la concentración de plasmalógenos en eritrocitos; la concentración de ácido fitánico en plasma o de ácidos grasos de cadena larga⁷.

Debido a la mutación del gen *PEX7*, la concentración de plasmalógenos en eritrocitos está disminuida, junto a elevación de ácido fitánico en plasma (tablas 1 y 2); en este caso llama la atención una discreta elevación de C26:0, este hallazgo es poco frecuente, ya que la tendencia es encontrar valores normales de estos ácidos, igualmente se evidenció aumento del ácido pipecólico, el cual ha sido descrito como un hallazgo inespecífico en alteraciones peroxisomales.

El diagnóstico molecular consiste en la secuencia-

ción del gen *PEX7*¹⁸, este estudio apoya el diagnóstico confirmado por estudios bioquímicos y la asesoría genética. Este caso no cuenta con el estudio molecular, ya que su empresa aseguradora de salud no autorizó su realización.

En el diagnóstico diferencial se destacan los defectos peroxisomales del grupo 1, siendo el principal el espectro Zellweger, conformado por el síndrome de Zellweger (#214100), la Adrenoleucodistrofia neonatal (#202370) y la enfermedad de Refsum Infantil (#266510). Estas enfermedades poseen signos clínicos diferentes a RCDP17,19. En el caso de los cuadros con condrodisplasia punctata se deben considerar como diagnósticos diferenciales: Condrodisplasia Rizomelica Punctata tipo 2 (OMIM: #222765), tipo 3 (OMIM: #600121) y tipo 5 (OMIM: #616716), las cuales tienen un fenotipo similar pero son de baja frecuencia (menos del 10% de los casos); condrodisplasia punctata ligada al cromosoma X recesiva o tipo braquitelefangica (OMIM: #302950) tiene los siguientes hallazgos diferentes: ipoplasia de las falanges distales, ictiosis; condrodisplasia punctata dominante ligada a X o síndrome Conradi Hünerman (OMIM: #302960) es usualmente letal en hombres y la presentación fenotípica incluye compromiso asimétrico de extremidades; Embriopatía por warfarina y otras deficiencias de vitamina K; Lupus Eritematoso Sistémico Materno; condrodisplasia punctata tipo tibial-matacarpo (OMIM: %118651), en este caso no se presenta cataratas⁷.

Con respecto al manejo se recomienda realizar estudios radiográficos, examen oftalmológico, vigilar crecimiento y desarrollo, resonancia magnética cerebral con espectroscopia. La presencia de catarata congénita requiere corrección quirúrgica. Si presenta trastornos de la deglución está indicada la gastrostomía. La función respiratoria debe ser vigilada, se sugiere la vacunación para neumococo e influenza. La terapia física mejora la movilidad articular y la hipotonía.

El tratamiento es básicamente de soporte, ya que la enfermedad es de mal pronóstico. Restringir el ácido fitanico en la dieta y su consecuente elevación presenta efectos benéficos sólo en casos de presentación leve⁷. Entre los alimentos ricos en ácido fitanico encontramos las carnes procedentes de rumiantes o productos derivados de estos (leche, quesos, mantequillas, natas) pescados o aceites procedentes de los mismos²⁰.

La RCDP1 es de tipo autosómico recesivo; los padres son portadores heterocigotos de la enfermedad, la probabilidad por cada embarazo de un hijo portador de la enfermedad es del 50%, un hijo afectado del 25% y un 25% de tener un hijo sano¹⁰. Se recomienda realizar diagnóstico molecular si está disponible. La supervivencia hasta los 2 años de edad es aproximadamente del 90%¹⁰. La mayoría de los individuos no sobreviven más allá de la primera década de vida.

Conclusiones

La condrodisplasia rizomélica punctata tipo 1 se origina por desórdenes en la biogénesis del peroxisoma, clasificándose en el grupo 1 de las enfermedades peroxisomales. Clínicamente están presentes malformaciones faciales y acortamiento rizomélico de miembros, además de alteraciones a nivel respiratorio, ocular, esqueléticas, otológicas, y del desarrollo físico y mental. Estas características deben ser conocidas por el personal de salud para poder identificar un paciente desde el nacimiento y asesorar adecuadamente a la familia. La enfermedad es letal en todos los casos, presentándose la muerte en la etapa infantil, no tiene un tratamiento o cura, y el manejo es básicamente de soporte dependiendo de la gravedad de las alteraciones del fenotipo, incluyendo restricciones dietarías, cirugías, terapia física, vacunas, gastrostomía, y manejo de las crisis respiratorias.

Responsabilidades éticas

Protección de personas y animales: Los autores declaran que los procedimientos seguidos se conformaron a las normas éticas del comité de experimentación humana responsable y de acuerdo con la Asociación Médica Mundial y la Declaración de Helsinki.

Confidencialidad de los datos: Los autores declaran que han seguido los protocolos de su centro de trabajo sobre la publicación de datos de pacientes.

Derecho a la privacidad y consentimiento informado: Los autores han obtenido el consentimiento informado de los pacientes y/o sujetos referidos en el artículo. Este documento obra en poder del autor de correspondencia.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Referencias

- Jiménez G, Silva I. Bases Bioquímicas y Fisiopatológicas de las enfermedades peroxisomales. Mensaje Bioquímico. 2003;27:1-23.
- Palencia R. Enfermedades peroxisomales. Estado actual. BOL PEDIATR. 2002; 42:21729.
- Brites P, Motley AM, Gressens P, Mooyer PA, Ploegaert I, Everts V, et al. Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet. 2003;12(18):2255-67.
- Shimozawa N1, Suzuki Y, Zhang Z, Miura K, Matsumoto A, Nagaya M, et al. A novel nonsense mutation of the PEX7 gene in a patient with rhizomelic chondrodysplasia punctata. J Hum Genet. 1999;44(2):123-5.
- Malheiro AR, da Silva TF, Brites P.
 Plasmalogens and fatty alcohols in
 rhizomelic chondrodysplasia punctata
 and Sjögren-Larsson syndrome. J Inherit
 Metab Dis. 2015;38(1):111-21.
- Rodrigues TA, Alencastre IS, Francisco T, Brites P, Fransen M, Grou CP, et al. A PEX7-Centered Perspective on the peroxisomal targeting signal Type 2-mediated protein import pathway. Mol Cell Biol. 2014;34(15):2917-28.

- Braverman NE, Moser AB, Steinberg SJ. Rhizomelic Chondrodysplasia Punctata Type 1. Genereview. Last Updated: 2012. http://www.ncbi.nlm.nih.gov/books/ NBK1270/.
- Karabayır N, Keskindemirci G, Adal E, Korkmaz O. A Case of Rhizomelic Chondrodysplasia Punctata in Newborn. Case Rep Med. 2014;2014:879679.
- Poll-The BT, Gärtner J. Clinical diagnosis, biochemical findings and MRI spectrum of peroxisomal disorders. BBA. 2012;1822(9):1421-9.
- White AL, Modaff P, Holland-Morris F, Pauli RM. Natural history of rhizomelic chondrodysplasia punctata. Am J Med Genet. 2003;118A(4):332-42.
- Fairbanks T, Emil S. Colonic perforation in the first few hours of life associated with rhizomelic chondrodysplasia punctata. Pediatr Surg Int. 2005;21(8):662-4.
- 12. Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, et al. A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab. 2010;99(4):408-16.
- Irving MD, Chitty LS, Mansour S, Hall CM. Chondrodysplasia punctata: a clinical diagnostic and radiological

- review. Clin Dysmorphol. 2008;17(4):229-41.
- Figueirêdo SdS, Araújo JSd, Kozan JEM, Santos NCLd, Tanganeli V. Condrodisplasia punctata rizomélica: relato de caso e breve revisão da literatura. Radiologia Brasileira. 2007;40:69-72.
- Cammarata F, González M, Cepeda M, Silva G. Heterogeneidad genética de la Condrodisplasia punctata. Dermatología Venezolana. 2007;45(2):4-8.
- Pascolat G, Zindeluk JL, Abrão KC, Rodrigues FM, Guedes CI. Rhizomelic chondrodysplasia punctata - case report. J Pediatr (Rio J). 2003;79(2):189-92.
- Galeano M, Anoni C, Quintero K, Flores E, Barraza G, Cerutti M, et al. Condrodisplasia Punctata en un lactante. Med infant. 2013;20(2):190-4.
- Wanders RJ, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet. 2005;67(2):107-33.
- 19. Van den Brink DM, Brites P, Haasjes J, Wierzbicki AS, Mitchell J, Lambert-Hamill M, et al. Identification of PEX7 as the second gene involved in Refsum disease. Am J Hum Genet. 2003;72(2):471-7.
- Hellgren LI. Phytanic acid-an overlooked bioactive fatty acid in dairy fat? Ann N Y Acad Sci. 2010;1190(1):42-9.