

www.scielo.cl

Andes pediatr. 2021;92(1):110-116 DOI: 10.32641/andespediatr.v92i1.2478

CLINICAL CASE

Pulmonary nodule in pediatrics: beyond the infection

Nódulo pulmonar en pediatría: más allá de la infección

Juan Peña-Cruz^{a,g}, Óscar Correa-Jiménez^b, Nelson Aponte-Barrios^c, Iván Molina-Ramírez^{a,d}, Natalia Olaya-Morales^{a,e}, Sonia Restrepo-Gualteros^{a,f}, Milena Villamil-Osorio^f

^aFacultad de Medicina. Universidad Nacional de Colombia. Bogotá D.C., Colombia

- ^bDivisión de Inmunología. HOMI Fundación Hospital Pediátrico la Misericordia. Bogotá D.C., Colombia
- División de Hematología y Oncología Pediátrica. HOMI Fundación Hospital Pediátrico la Misericordia. Bogotá D.C., Colombia
- ^dDivisión de Cirugía Pediátrica. HOMI Fundación Hospital Pediátrico la Misericordia. Bogotá D.C., Colombia
- ^eDivisión de Patología. HOMI Fundación Hospital Pediátrico la Misericordia. Bogotá D.C., Colombia
- División de Neumología Pediátrica. HOMI Fundación Hospital Pediátrico la Misericordia. Bogotá D.C., Colombia

Received: May 12, 2020; Approved: August 23, 2020

What do we know about the subject matter of this study?

A pulmonary nodule in the pediatric patient is a diagnostic challenge. Although its main causes are infectious, primary pulmonary neoplasia should be considered within the diagnostic options

What does this study contribute to what is already known?

We present a case of a primary pulmonary mucoepidermoid carcinoma in an adolescent girl, highlighting the importance of considering primary neoplasms within the etiological options of a pulmonary nodule in pediatrics.

Abstract

The study of a pulmonary nodule in pediatrics is a diagnostic challenge where multiple pathologies must be taken into account, especially infections. In developing countries, where tuberculosis infection is endemic, it is one of the most likely diagnoses; however, the diagnostic possibility of malignancy should never be overlooked. **Objective:** To describe a case report of a patient with a pulmonary nodule, that after ruling out the most frequent causes, a primary malignant tumor was diagnosed. **Clinical Case:** 17-year-old female patient with a one-month history of cough, dyspnea, and hemoptysis, without other symptoms. Since she did not respond to conventional antibiotic management, a chest CT scan with contrast was performed which showed a pulmonary nodule with irregular contours, and with the bronchoalveolar lavage pulmonary infections were ruled out (pulmonary tuberculosis, fungal infection, and others bacteria). Biopsy of the lesion was performed to complete the study which histopathology was compatible with a mucoepidermoid carcinoma (MEC). The patient

Keywords:

Carcinoma, Mucoepidermoid; Solitary Pulmonary Nodule; Lung Neoplasms; Pediatrics

Correspondence: Milena Villamil-Osorio mile_villamil1002@hotmail.com

How to cite this article: Andes pediatr. 2021;92(1):110-116. DOI: 10.32641/andespediatr.v92i1.2478

⁹Estudiante de Medicina

underwent right low lobectomy and lymph node resection with good clinical response during three years of follow-up. **Conclusion:** Pulmonary nodule in pediatrics is a finding usually associated with infection, nevertheless, neoplastic conditions have to be considered, not only metastasis but also primary pulmonary malignant lesions due to prognosis implications.

Introduction

The pulmonary nodule in pediatrics is a rare condition, defined as the image of a rounded lesion in the pulmonary parenchyma of up to 3 cm in diameter as in adults¹. It may be incidentally found or present in association with respiratory symptoms, observing that incidental nodules in children do not show evident growth over time with low risk of malignancy, as described by Assega et al. following 36 patients². Most nodules and masses in children are non-malignant and have granulomatous origin; infections and congenital lesions outnumber neoplastic lesions in frequency, where primary lung tumors are rare in children³.

In the diagnostic approach, the following should be considered: Is the child healthy, with normal growth and development? o Does the child have a significant weight loss, hemoptysis, respiratory distress, lymphadenopathy, or paraneoplastic syndrome? Does the child have positive findings on physical examination to guide the diagnosis? Is the child at risk for granulomatous lung disease? Does the child have a history of recent travel, exposure, or inhalation? As well as history of malignancy and immunodeficiency⁴.

Nodules due to pulmonary metastatic disease are frequent in children with Wilms tumor and sarcomas³. In patients immunocompromised, it is possible to find nodules due to infection by bacteria, aspergillosis, nocardiosis, and mucormycosis⁵. The prevalence and characteristics of nodules in children without history of malignancy are less clear².

Once the most frequent etiologies have been ruled out, one must consider primary malignancy as the cause of the pulmonary nodule. The epidemiology of primary malignant neoplasms of the lung is not well known, there are only reports and case series, and it is estimated that they represent less than 7% of all tumors in pediatrics⁶. The frequency varies according to age and the most commonly described types are carcinoid tumors, inflammatory myofibroblastic tumors, pleuropulmonary blastoma, and less frequently described are small cell lung cancer, adenocarcinoma, infantile pulmonary hemangioma, and mucoepidermoid carcinoma (MEC)⁷.

Thus, in pediatrics, the finding of a single pulmonary nodule is infrequent and diagnostic possibilities

are considered different from adults, who most often present lung cancer⁸. However, there are not many data in pediatrics nor reports of patients with malignancy and, although in children without oncologic disease or immunodeficiency the most common finding is an infection due to subacute germs such as tuberculosis and fungi, lung neoplasia is an option in the diagnosis and it is not clear in which pediatric patients it should be suspected⁴.

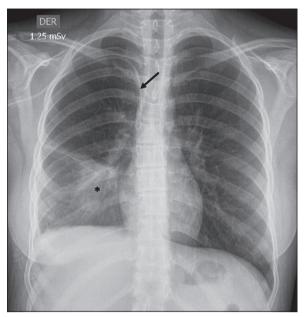
The objective is to describe the clinical case of a patient with a pulmonary nodule who, after ruling out the most common causes, was diagnosed with a primary pulmonary malignancy, highlighting the importance of this diagnostic possibility in pediatrics.

Clinical Case

A 17-year-old female patient with history of asthma without crises or symptoms in the last ten years, with no other significant pathological or exposure history, consulted due to a one-week history of cough, dyspnea, chest pain, and hemoptysis, without fever or other associated symptoms, presenting with right lower lobe opacity on chest X-ray (Figure 1).

Bacterial infection was suspected starting antibiotic treatment, however, since there was no satisfactory clinical response after four days of treatment, complementary tests were performed with a high-resolution CT scan of the chest which showed a ground-glass opacity in the right lower and middle lobes and a decrease in their volume, bronchus obliteration in the right lower lobe, with hypodense material that could correspond to bronchiectasis with mucoid impaction.

A fibrobronchoscopy was performed which showed concentric reduction of the bronchial lumen in the posterior segment of the right lower lobe with a platelet plug in it. After a week of clinical stability and improvement of dyspnea, it was decided to continue with expectant management, after performing a transbronchial lung biopsy which was negative for malignancy.


After three weeks, she consulted again due to recurrence of hemoptysis and dyspnea and, based on the clinical evolution with prolonged symptoms, we considered a subacute infection such as tuberculosis, fungal infection, a systemic disorder such as vasculitis or allergic bronchopulmonary aspergillosis (ABPA), given the presence of asthma. A chest CT scan with contrast was performed, which showed a 2.0 x 2.7 cm nodule, with soft tissue density of irregular contours and without calcifications in the posterior segment of the right lower lobe, no ground-glass opacity or signs of previous bronchial obliteration, and no findings suggestive of arteriovenous malformation, therefore studies were continued (Figure 2).

Fibrobronchoscopy with bronchoalveolar lavage was performed again with no positive anatomical findings and negative studies for tuberculosis, fungi, and other bacteria (microbiological staining, fungal and mycobacterial cultures, galactomannan antigen, and polymerase chain reaction (PCR) for *Mycobacterium tuberculosis*); tuberculin test and serial sputum smears were negative. Total immunoglobulin E was increased compatible with previous asthma, however, the specific IgE for *Aspergillus fumigatus* was negative, ruling out ABPA, and vasculitis was also ruled out through the laboratory tests (Table 1).

Since there was no evidence of infection, pulmonary metastasis was ruled out, so thyroid, breast, and abdominal ultrasonography was performed without finding the presence of primary neoplasia. In order to make a diagnosis of primary neoplasia or congenital malformation, the study was complemented with a biopsy of the lesion by thoracotomy.

The biopsy revealed a 4.2 x 2.8 x 2.5 cm mass in the right lower lobe. Histopathology showed a well-defined lesion consisting of acinar mucus-secreting cells, as well as smaller cell nests, a mainly glandular pattern with cyst-like areas, so it was not possible to be sure of the histogenesis, suggesting a mucoepidermoid tumor as the main diagnostic possibility (Figure 3).

Immunohistochemistry studies showed diffusely positive cells expressing CK7 and some positive foci for CK5/6, in addition to focal positivity for CD117, CA125, and HER2 with overexpression of p53 and a proliferation index around 10%. It was negative for

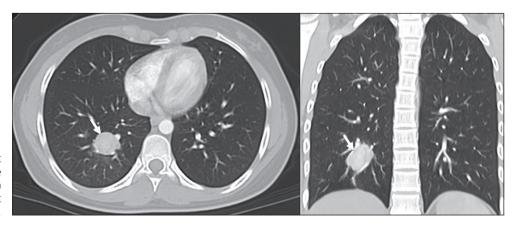


Figure 1. Chest radiograph. Evidence a triangle opacity (asterisk) in right lower lobe posterior segment. Central venous catheter is observed (arrow).

S100, HMB45, PAX8, napsin, thyroid transcription factor 1 (TTF1), estrogens, CDX2, CK20, and chromogranin (Figure 3), therefore we considered, both by histology and immunohistochemistry, compatible with an intermediate-grade MEC.

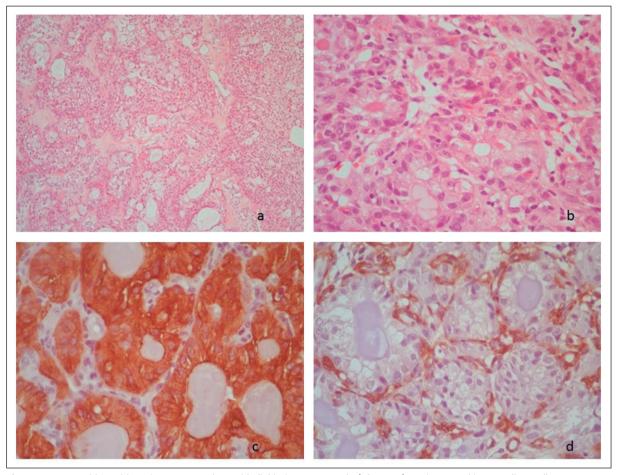
Right lower lobectomy with lymph node removal was performed since the biopsy showed involvement of the resection borders. The myRisk® hereditary cancer panel was performed, which included complete sequencing and analysis of deletions and duplications of 28 genes, without finding mutations of clinical significance and ruling out syndromes such as Li-Fraumeni.

The patient presented an adequate clinical evolution without complications or recurrence at three years of follow-up.

Figure 2. High-resolution chest computed tomography. Presence of nodule with soft tissue density in the posterior segment of the right lower lobe of 2.0 x 2.7 cm (arrow).

Variables	Result	Reference values
Serial sputum smear #3	Negative	
Tuberculin skin test (Purified Protein Derivative)	0 mm	Less than 4 mm in tuberculosis suspect according to clinical and radiological finds
Immunoglobulin E (IU/mL)	1499	1.53-114
Aspergillus fumigatus specific IgE (kUA/L)	Less than 0.1	Less than 0.35**
Alfa-fetoprotein (ng/mL)	1.7	0.6-4.2
Human chorionic gonadotropin Beta-subunit (mIU/mL)	Less than 0.3	
Anti-neutrophil cytoplasm antibodies p-ANCAS and c-ANCAS	Negative	Negative
Anti-nuclear antibodies	Negative	Negative
Galactomannan antigen <i>Apergillus</i> spp from BAL*	0.1	
KOH test, Gram stain and Ziehl-Neelsen stain from BAL*	Negative for fungi, bacteria or acid-fast bacilli	
Culture from LBA*	Negative for bacteria, fungi or mycobacteria	
Polymerase chain reaction for Mycobacterium tuberculosis	Negative	
Histologic stains from BAL*	Positive for hemosiderophages around 60%, Periodic acid–Schiff stain and Grocott stain negative, macrophages 90%, scant polymorphonuclear and lymphocytes cells	
Cytomegalovirus (CMV) from BAL*	Undetectable	
Thyroid, breast and abdominal ultrasonography	Without alterations	

Discussion


Unlike considerations in adults, in pediatrics, the first diagnostic option when presenting a single pulmonary nodule is not primary pulmonary malignancy. The diagnostic approach of a pediatric patient with hemoptysis and a pulmonary nodule should lead to evaluate infectious processes (bacterial or fungal), and in countries such as Colombia, pulmonary tuberculosis, since it is a country endemic of this disease. It should be noted that pulmonary tuberculosis in pediatrics is still a public health challenge, especially in Latin America, where it is considered that there is a great gap between its detection and management.

Its incidence is much higher than primary pulmonary neoplasms and this, together with the varied clinical manifestations or radiological findings, makes its initial study essential in patients with high suspicion, representing an important differential diagnosis^{9,10}.

However, the presence of neoplasms or vascular malformations cannot be dismissed⁴. We present a case of a previously healthy patient who presented a pulmonary nodule of neoplastic etiology.

MEC of the lung is a low-frequency tumor, which is around 0.2% of all malignant lung tumors at any age¹¹. It accounts for approximately 9 to 10% of malignant lung tumors in pediatrics¹². Cases have been reported in patients as young as two years of age¹³ and about half of the patients at the time of diagnosis are younger than 30 years of age¹⁴. This type of tumor mainly affects the salivary glands, and it was only in 1952 that Smetana et al. described the first tracheobronchial tumor with these characteristics¹⁴. The MEC consists of mucus-secreting cells high in mucins and with mitotic figures, along with non-keratinized squamous cells which grow in a sheet-like pattern and, finally, intermediate or transitional cells¹⁵.

Since MEC is rare, it presents symptoms that are

Figure 3. Mucoepidermoid carcinoma. **A.** and **B.** Epithelial lesion composed of sheets of mucinous and intermediate cells. **C.** Immunohistochemistry for CK7 is positive in most epithelial cells. **D.** Immunohistochemistry for CK5/6 is positive for some cells with epidermoid phenotype.

common to other diseases, which makes its diagnosis difficult¹⁶. In our patient, it appeared as a picture of frequent symptoms both in patients presenting this tumor and in respiratory infections, asthma, cystic fibrosis, immunodeficiencies, among others^{17,18}. Differential diagnoses, such as ABPA can present with these symptoms in patients with history of asthma and increased IgE, reporting confusion with tuberculosis in up to 21% of cases^{19,20}.

In most cases, the diagnostic imaging tests show bronchial obstruction^{11,16}, as in this case, where we observed bronchial obliteration in the right lower lobe with volume loss. Frequently, MEC presents as an exophytic mass that can be observed in bronchoscopy, allowing the diagnosis through a transbronchial biopsy^{17,21}; however, in this case, no lesion was evidenced, only a concentric reduction of the bronchial lumen. In the transbronchial biopsy, the presence of inflammatory tissue or results without alterations have been described, which delays the diagnosis. In our case, the

transbronchial biopsy did not have good diagnostic performance since it did not show characteristics of malignancy, which agrees with the literature¹⁷.

After reviewing 204 cases of lung tumors in children, Dishop et al. found that most of them were of metastatic origin, followed by benign tumors and finally primary malignant lesions⁶. Among the latter, carcinoid tumor, bronchogenic carcinoma, MEC, and pleuropulmonary blastoma were most frequently present^{6,12}. Other authors have reported malignant lesions in 64% of the cases²².

Jaramillo et al. describe predominantly left localization in cases of MEC in the pediatric population, as opposed to the patient presented. 41% of the cases were located on the right, out of which 23% were in the lower lobe bronchus¹². The diagnosis of low-grade MEC is predominant in pediatrics¹⁴, however, in this patient, it was classified as intermediate grade, which represents 6% of the cases reported in children under 18 years of age¹². The prognosis in the pediatric popu-

lation is good, with a survival close to 100% at five and ten years of follow-up²³.

The main therapeutic measure for MEC is surgical resection with the removal of adjacent lymph nodes in order to verify its dissemination²⁴. It is usually curative without the need for complementary therapies in low histologic grade^{14,24}. The most common technique is lobectomy with the best results, but to preserve most of the lung parenchyma, however, alternatives such as segmentectomy and sleeve resection have been used¹⁴. Endoscopic removal is an alternative treatment, however, it has been considered an unreliable technique due to the difficulty for the complete resection of the tumor and other complications such as bleeding control¹². Even so, the use of laser surgery has allowed the complete resection of some tumors, reducing complications and tumor recurrence in a follow-up of up to three years²⁵.

In the histological evaluation of this neoplasm, three characteristic cell types can be identified (luminal mucinous, squamous, and intermediate). The immunohistochemical studies include markers such as cytokeratins CK7, CK5/6, CK8 in addition to p53 and p63²⁶. The MEC is negative for napsin A, TTF-1, S100, and alpha-actinin^{21,26}, which is in line with the immunohistochemical markers performed in this case.

Conclusions

The pulmonary nodule in pediatrics requires a broad diagnostic approach, the most frequent etiologies such as infection and malformations must be ruled out, and then we must include the search for metastatic and primary malignancy of the lung. Among the latter is lung MEC, which, despite it is a very uncommon neoplasm in pediatrics, should not be underestimated, since its early diagnosis and timely treatment allow a good prognosis in children and adolescents.

Ethical Responsibilities

Human Beings and animals protection: Disclosure the authors state that the procedures were followed according to the Declaration of Helsinki and the World Medical Association regarding human experimentation developed for the medical community.

Data confidentiality: The authors state that they have followed the protocols of their Center and Local regulations on the publication of patient data.

Rights to privacy and informed consent: The authors have obtained the informed consent of the patients and/or subjects referred to in the article. This document is in the possession of the correspondence author

Conflicts of Interest

Authors declare no conflict of interest regarding the present study.

Financial Disclosure

Authors state that no economic support has been associated with the present study.

References

- Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697-722.
- Assefa D, Atlas AB. Natural history of incidental pulmonary nodules in children. Pediatr Pulmonol. 2015;50(5):456-9.
- Eggli KD, Newman B. Nodules, masses, and pseudomasses in the pediatric lung. Radiol Clin North Am. 1993;31(3):651-66
- Westra SJ, Brody AS, Mahani MG, et al. The incidental pulmonary nodule in a child. Part 1: recommendations from the SPR Thoracic Imaging Committee regarding characterization, significance and follow-up. Pediatr Radiol. 2015;45(5):628-33.
- Azoulay E, Russell L, Van de Louw A, et al. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med. 2020;46(2):298-314.
- Dishop MK, Kuruvilla S. Primary and metastatic lung tumors in the pediatric population: a review and 25-year experience at a large children's hospital. Arch Pathol Lab Med. 2008;132(7):1079-103
- Lichtenberger JP, 3rd, Biko DM, Carter BW, Pavio MA, Huppmann AR, Chung EM. Primary Lung Tumors in Children: Radiologic-Pathologic Correlation From the Radiologic Pathology Archives. Radiographics. 2018;38(7):2151-72.
- Strouse PJ. The incidental pulmonary nodule in a child: a conundrum. Pediatr Radiol. 2015;45(5):627.
- Yunda LFI, Sepúlveda EVF, Herrera KCM, Moreno GC. Pulmonary tuberculosis in a Pediatric Reference Hospital in Bogotá, Colombia. Int J

 Camacho-Badilla K, Camilo-De Amarante E, Martínez De Cuellar C, Castillo-Bejarano JI, Mascareñas-De Los Santos

Mycobacteriol. 2017;6(3):258-63.

- Bejarano JI, Mascarenas-De Los Santos AH, López-López P. Tuberculosis en América Latina y su impacto en pediatría. Revista Latinoamericana de Infectología Pediátrica. 2020;33(2):66-73.
- 11. Kose M, Bilgin M, Kontas O, Ozturk S, Doganay S, Ozdemir MA. A case of mucoepidermoid carcinoma of the bronchus presented with hydropneumothorax in a child. Pediatr Pulmonol. 2014;49(3):E86-9.
- 12. Jaramillo S, Rojas Y, Slater BJ, et al. Childhood and adolescent tracheobronchial mucoepidermoid carcinoma (MEC): a case-series and review of the literature. Pediatr Surg Int. 2016;32(4):417-24.
- Szymanski LJ, Molas-Torreblanca K, Bawab R, et al. Bronchial Mucoepidermoid Carcinoma With the Classic MAML2 Gene Rearrangement in a 2-year-old Boy. Pediatr Dev Pathol. 2018;21(5):480-5.
- Song Z, Liu Z, Wang J, Zhu H, Zhang Y. Primary tracheobronchial mucoepidermoid carcinoma-a retrospective study of 32 patients. World J Surg Oncol. 2013;11:62.
- Travis WBE, Burke A, Marx A, Nicholson A. WHO Classification of tumours of the lung, pleura, thymus and heart. Fourth ed. Lyon: WHO; 2015.
- Granata C, Battistini E, Toma P, et al. Mucoepidermoid carcinoma of the bronchus: a case report and review of the literature. Pediatr Pulmonol. 1997;23(3):226-32.
- 17. Welsh JH, Maxson T, Jaksic T, Shahab I, Hicks J. Tracheobronchial mucoepidermoid carcinoma in childhood and adolescence: case report and review of the literature. Int J Pediatr

- Otorhinolaryngol. 1998;45(3):265-73.
- Cuestas G, Rodríguez V, Doormann F, Bellia Munzón P, Bellia Munzón G. [Bronchial mucoepidermoid carcinoma in childhood. Case report]. Arch Argent Pediatr. 2017;115(4):e260-e4.
- Chacko A, Moss RB. Manifestations of pulmonary aspergillosis in pediatrics. Curr Opin Pediatr. 2020;32(3):389-94.
- Zhang C, Jiang Z, Shao C.
 Clinical characteristics of allergic bronchopulmonary aspergillosis. Clin Respir J. 2020;14(5):440-6.
- Roden AC, García JJ, Wehrs RN, et al. Histopathologic, immunophenotypic and cytogenetic features of pulmonary mucoepidermoid carcinoma. Mod Pathol. 2014;27(11):1479-88.
- Roby BB, Drehner D, Sidman JD. Pediatric tracheal and endobronchial tumors: an institutional experience. Arch Otolaryngol Head Neck Surg. 2011;137(9):925-9.
- 23. Neville HL, Hogan AR, Zhuge Y, et al. Incidence and outcomes of malignant pediatric lung neoplasms. J Surg Res. 2009;156(2):224-30.
- Dinopoulos A, Lagona E, Stinios I, Konstadinidou A, Kattamis C. Mucoepidermoid carcinoma of the bronchus. Pediatr Hematol Oncol. 2000;17(5):401-8.
- Li CH, Huang SF, Li HY. Bronchoscopic Nd-YAG laser surgery for tracheobronchial mucoepidermoid carcinoma-a report of two cases. Int J Clin Pract. 2004;58(10):979-82.
- Sánchez-Mora N, Parra-Blanco V, Cebollero-Presmanes M, Carretero-Albiñana L, Herranz ML, Álvarez-Fernández E. Mucoepidermoid tumors of the bronchus. Ultrastructural and immunohistochemical study. Histiogenic correlations. Histol Histopathol. 2007;22(1):9-13.