Rev. Chil. Pediatr. 72 (4); 285-291, 2001

Factores de riesgo y prevención en diabetes mellitus tipo 1. Actualización

Hernán García B.1

Resumen

La diabetes mellitus insulinodependiente o tipo 1 (DM1) es el resultado de un largo proceso inmunológico que ocasiona la destrucción selectiva de las células beta de los islotes pancreáticos. A pesar del avance de las investigaciones médicas no se ha logrado curar la enfermedad, por lo que adquieren importancia los intentos destinados a prevenirla en los parientes de primer grado, cuyo riesgo de adquirir la enfermedad es 20 veces superior al de la población general. Para efectuar cualquier intervención en el sistema inmune, que altere la historia natural de esta enfermedad, se debe reconocer los individuos susceptibles de desarrollar DM1. Para ello se utiliza la determinación de anticuerpos antiislotes (ICA), y en aquellos que son positivos (± 35%) se mide la primera fase de la secreción de insulina en respuesta a una carga de glucosa endovenosa (FPRI); los sujetos susceptibles o con mayor riesgo de desarrollar DM1 son aquellos con ICA(+) y FPRI menor al p10 de la población de referencia. Este protocolo se ha aplicado a parientes de primer grado de sujetos con DM1, en los dos ensayos clínicos multicéntricos preventivos y controlados que tienen lugar en este momento. El protocolo europeo (ENDIT) utiliza nicotinamida y ha reclutado mas de 40 000 individuos. El protocolo americano denominado Diabetes Prevention Trial of type 1 Diabetes (DPT-1) utiliza insulina oral o subcutánea según el riesgo de desarrollar DM1; este ha reclutado mas de 80 000 participantes. Los primeros resultados de estos estudios se esperan para el año 2003 y 2004. Existen fundadas esperanzas de que estos dos grandes estudios prospectivos de largo plazo con intervenciones preventivas, nos ayudarán a responder la pregunta si es posible alterar el destino biológico de nuestros pacientes y prevenir o retardar el comienzo de la diabetes tipo 1 en poblaciones susceptibles.

(Palabras clave: diabetes mellitus, diabetes insulinodependiente, prevención.)

Risk factors and prevention in diabetes mellitus type 1: an update

Insulin dependent diabetes mellitus (IDDM) or type 1 is the result of a long immunological process resulting in destruction of pancreatic islet beta cells. Inspite of medical advances a cure for the disease has not been achieved. This prompts the importance of attempts to prevent the disease in first degree relatives whose risk of developing IDDM is 20 times greater than the general population. Any attempt to modify the immune system that may alter the disease's natural history must first identify susceptibles individuals. To this end the presence of anti-islet antibodies is determined. In those who tested positive (35%) it is measured the first phase of insulin secretion in response to an iv glucose load. Individuals with a greater risk of developing IDDM are those who are antibody positive and a FPIR of less than the 10th centile of the reference population. This protocol has been applied to first degree relatives of patients with IDDM in 2 controlled prospective multicentre clinical trials taking place at this moment. The European trial (ENDIT) is using nicotinamide and has recluted more than 40,000 subjects, while the American protocol, the Diabetes Prevention trail of DM type 1 (DPT-1) use oral or subcutaneous insulin according to the risk of developing IDDM. In this trial are participating more than 80,000 subjects, the results of which are expected in 2003-4. There are hopes that the results of this trials help to answer the question, if it is possible to alter the biological destiny of a person, and prevent or retard the development of IDDM in susceptible individuals.

(Key words: diabetes mellitus, prevention, insulin-dependent diabetes.)

Médico, Profesor Asociado. Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile. Clínica Santa María.

INTRODUCCIÓN

La diabetes mellitus insulinodependiente o tipo 1 (DM1) es el resultado de un largo proceso inmunológico que ocasiona la destrucción selectiva de las células productoras de insulina de los islotes pancreáticos, las células beta. A pesar del avance de las investigaciones médicas que han favorecido el mejor tratamiento de los enfermos portadores de esta condición, hasta la actualidad no se ha logrado curar la enfermedad, por lo que adquieren especial importancia los intentos destinados a prevenirla.

Aunque se ha avanzado bastante en el conocimiento de los factores etiológicos que condicionan la DM1, no hay aún claridad absoluta en su patogenia; se sabe que hay múltiples mecanismos involucrados y que la destrucción de las células beta es de tipo autoinmune, modulada por linfocitos T. El que la diabetes recurra después del trasplante de páncreas o de células beta, ofrece evidencias de que las células trasplantadas son obietos de una respuesta inmune, producto de una memoria inmunológica. El sistema inmune actúa a través de una respuesta mediada por citoquinas (interferón alfa, factor de necrosis tumoral o interleuquina) que son las encargadas de la destrucción de células beta. Por otra parte no se ha podido identificar un simple autoantígeno, lo que sugiere la participación de distintas proteínas en el proceso inmunológico. La existencia de una exquisita selectividad para las células beta respecto a las otras células de los mismos islotes, ha sugerido la participación directa de ella en iniciar el proceso desencadenando su propia destrucción; su susceptibilidad sería determinada por la acción de daños químicos, infecciones virales o bien establecida durante su diferenciación celular. La posibilidad de interrumpir esta secuencia patogénica, mediante una intervención en el sistema inmune, ofrecería la oportunidad de alterar la historia natural de esta enfermedad y lograr así su prevención.

A continuación se hace una revisión del estado actual del conocimiento en relación a factores de riesgo y prevención en diabetes mellitus tipo 1.

RIESGO DE DESARROLLAR DIABETES

Los parientes de primer grado tienen un riesgo entre 10 a 20 veces superior al de la

población general de adquirir la enfermedad. La incidencia de DM1 varía en ellos entre el 3 al 10%, dependiendo de distintas variables como grado de parentesco, edad y raza. Así, si es el padre el portador, el riesgo de sus hijos de desarrollar diabetes es mayor, aproximadamente 10% en USA; si es la madre y esta es menor de 25 años el riesgo es de 4%, y si ella es mayor de 25 años el riesgo es solo 1%, casi el mismo de la población norteamericana. También se ha establecido que si el debut de la diabetes ocurrió antes de los 11 años en los padres, el riesgo para sus hijos es mayor.

En parientes cercanos con anticuerpos antiislotes positivos (ICA(+)) la edad tiene un efecto dramático en el riesgo de desarrollar la enfermedad. La posibilidad que ellos presenten una DM1 clínica es de 66% en menores de 10 años y disminuye gradualmente hasta 16% después de los 40 años, según se demuestra en un estudio prospectivo de seguimiento con más de 6 500 parientes de primer grado de niños diabéticos realizado en USA entre 1979-1993.

Aproximadamente 1 de cada 10 diabéticos tipo 1 tiene una condición conocida como enfermedad glandular autoinmune tipo 2, presentando además de la diabetes tipo 1, enfermedad tiroidea, insuficiencia suprarrenal y a veces otros desórdenes autoinmunes. Para aquellos con este síndrome, el riesgo de sus hijos de adquirir el mismo cuadro, incluyendo diabetes tipo 1, es de 50%, de acuerdo a los datos entregados por la Asociación Americana de Diabetes.

En relación con la raza, los caucásicos tienen un mayor riesgo de desarrollar diabetes tipo 1 que cualquier otra raza. No se sabe con certeza si esto es debido solo a las diferencias genéticas o también a influencias ambientales.

En los parientes de primer grado, es decir, padres, hijos o hermanos de sujetos con DM1, un buen marcador de susceptibilidad es la determinación de los ICA, los que a pesar que no estar involucrados en la patogénesis de la enfermedad, si están positivos determinan un riesgo promedio de 35% de desarrollar una DM1 en un plazo cercano. Además se pueden determinar anticuerpos antiinsulina (IAA) o anticuerpos antiglutamic acid decarboxilasa (GAD); sin embargo, son los ICA los mas ampliamente usados en todos los estudios de prevención que se reali-

zan actualmente. En aquellos parientes con ICA positivos, es decir, que tienen un título mayor a 20 UFJ (*Juvenile Diabetes Foundation Units*) después de dos exámenes consecutivos (ya que existe un 10% de los casos en que el segundo examen es negativo) se determina la primera fase de la secreción de insulina en respuesta a una carga de glucosa endovenosa (FPRI) y se compara con controles normales. Los sujetos susceptibles o con mayor riesgo de desarrollar DM1 son aquellos con ICA(+) y FPRI menor al p10 de la población de referencia.

Aplicando este criterio, un estudio realizado en Finlandia, que ha investigado más de 800 familias de sujetos con DM1 y cuenta con un periodo de seguimiento mayor de 9 años, detectó que 92% de los parientes con ICA positivos y FPRI disminuido desarrolló diabetes clínica durante los primeros 5 años de seguimiento.

Solo unos pocos estudios han logrado reproducir la historia natural de la enfermedad, ya que esto implica un tiempo largo de observación y determinaciones seriadas. En el estudio Babydiab de Munich, desde 1989 se determinan los títulos de ICA y otros anticuerpos al nacimiento, a los 9 meses y a los 2, 5, 8, y 11 años en todos los hijos de padre o madre con DM1. Hasta ahora se han reclutado más de 1 600 pacientes, y los análisis después de los 2 primeros años de seguimiento demuestran que los ICA aparecen ya a los 9 meses y que a los 2 años 3,9% tiene autoinmunidad contra al menos 1 anticuerpo y 2,3% la tiene a 2 o más. Es interesante mencionar que en este estudio ni la alimentación al pecho ni las vacunaciones se asociaron con autoinmunidad, al menos los primeros 2 años de vida.

Otro criterio complementario para conocer sujetos susceptibles entre los parientes de DM1 es la determinación de los antígenos de histocompatibilidad HLA (Human Leukocyte Antigen), específicamente los de clase II. Los genes del sistema HLA son los más importantes en conferir protección o susceptibilidad para DM1. En poblaciones caucásicas más del 90% de los DM1 tienen HLA-D3 y/o HLA-D4. El riesgo de desarrollar la enfermedad aumenta 3 veces en individuos portadores de uno de estos antígenos. Más recientemente se han identificado también importantes asociaciones con las subregiones HLA DQ, mientras los alelos DQB1*02 y *0302 incrementan el riesgo de diabetes, DQB1*0301, *0102 y *0602 otorgan protección. Los parientes de primer grado que son ICA positivos pero que tienen alelos protectores retardan o no desarrollan la enfermedad, lo que indica que el efecto protector ejercido por estos genes, cualquiera sea su mecanismo de acción, se ejerce después que el proceso inmunológico se ha iniciado.

INCIDENCIA DE DIABETES Y FACTORES INVOLUCRADOS

En las décadas recientes la enfermedad ha aumentado en Europa y Estados Unidos, así como también en nuestro país, mientras los asiáticos mantienen en general una baja incidencia. Este incremento involucra especialmente a pacientes de edades menores como lactantes y preescolares. Como el pool genético no cambia tan rápidamente de una generación a otra, se supone que debe haber un factor ambiental o de conducta involucrado. Se ha postulado que este sea viral o producto de una exposición ambiental a diversos agentes.

La obesidad es un factor conocido de riesgo de diabetes 2, pero recientemente ha sido demostrado en un bello trabajo epidemiológico realizado en Finlandia que también los niños que desarrollaron diabetes tipo 1, especialmente los varones, eran consistentemente más obesos que los controles, aun ajustando todas las variables sociodemográficas. Esta asociación se podría explicar por un exceso de insulina (hiperinsulinismo) secretado por células beta hiperfuncionantes, las cuales serían más susceptibles a los efectos citotóxicos de las citoquinas, de tal manera que en algún momento esta secreción insulínica aumentada no puede ser satisfecha por las células beta estresadas y se manifiesta la enfermedad. La incidencia de diabetes en Finlandia ha aumentado más de 4 veces desde 1950, lo que también ocurre en otros países, así como el nuestro. Estos datos en conjunto sugieren una asociación entre la mayor prevalencia de obesidad infantil y la incidencia aumentada de diabetes tipo 1 observada en muchas naciones. Por todo lo señalado, el incremento excesivo de peso debe ser considerado un factor de riesgo de desarrollar DM1 en individuos susceptibles, con el objeto de establecer en ellos las medidas preventivas pertinentes.

Otros factores ambientales que han sido relacionados con DM1 es la exposición precoz a la proteína de la leche de vaca, y aunque los resultados de las investigaciones no son concluyentes existen ensayos clínicos en curso para responder esta pregunta. También el gluten del trigo ha sido mencionado como un posible agente predisponente por la alta correlación entre ICA y anticuerpos antiendomisio que se observa en DM1 y sus parientes cercanos, pero no existen estudios controlados en este sentido.

En Chile, el Registro Nacional de Incidencia de Diabetes Mellitus Insulinodependiente, del proyecto OMS DIAMON (Diabetes Mondiale), entre 1986 y 2000, ha mostrado tasas de incidencia anual/100 000 habitantes cercanas a 3,3 (rango: 1,4 (1987) a 4,7 (1995 y 2000)) y una tendencia al aumento durante los años evaluados (MINSAL).

TRATAMIENTO PREVENTIVO DE LA DM1

Los requisitos para que un ensayo clínico preventivo sea válido, son que la enfermedad afecte significativamente al individuo y a la sociedad, que los individuos en riesgo puedan ser identificados, que la terapia sea segura y potencialmente efectiva y que considere la relación costo beneficio. La diabetes insulinodependiente cumple con todos estos requisitos, lo que valida los intentos por prevenir la enfermedad que se desarrollan en diferentes partes del mundo. Los individuos son reclutados desde familias con niños o padres diabéticos. Como todavía no existe un agente probadamente efectivo, estas intervenciones se consideran aún experimentales.

El uso de inmunosupresores como ciclosporina tuvo sus adeptos en la década de los 80, basado en estudios en ratas NOD en las cuales se obtenía prevención de la enfermedad. Esto motivó el uso en seres humanos con DM1 recién diagnosticados, pero la experiencia no fue buena, ya que tienen muchos efectos colaterales y el proceso inmune se reinicia inmediatamente cuando estas se suspenden. Por ello este tipo de tratamiento en la actualidad ha sido desechado, y no sería lógico plantearlo en niños sanos en los que no se tiene la certeza absoluta que desarrollarán diabetes; no obstante, el advenimiento de nuevos y más inocuos medicamentos inmunosupresores permitirá reconsiderarlos en un futuro próximo.

Los más grandes ensayos clínicos preventivos y controlados que tienen lugar en este momento son los europeos que utilizan nicotinamida y los que se desarrollan en USA y Europa que utilizan insulina.

La administración de insulina por una variedad de rutas puede prevenir el inicio de la DM1 en ratas prediabéticas NOD y BB semejantes a la diabetes 1 humana. Aunque su mecanismo de acción no está totalmente aclarado, se postula que además de permitir el reposo de la célula beta, induce una tolerancia inmunológica, lo que explica por qué la insulina oral, metabólicamente inactiva, ha logrado similares resultados en estos modelos animales. Esto condujo a intentar acciones similares en parientes de primer grado de casos de DM1, con alto riesgo de desarrollar la enfermedad. Los datos preliminares mostraron que estos individuos se benefician con la administración de insulina parenteral u oral, el tratamiento parece bien tolerado y no tendría efectos colaterales importantes. Existen varios estudios pilotos en humanos, el primero se realizó en 1993 en la Clínica Joslin, en que de 5 pacientes solo 1 desarrolló la enfermedad, comparada con 7 de 7 en el grupo control. En un estudio piloto más grande, aleatorio y controlado (The Schwabing Insulin Prophylaxis Trial (1989-1995)), se estudiaron 1 736 parientes de primer grado de DM1, de ellos hubo 64 con ICA(+) (3,7%), y de estos 17 presentaron un FPRI < p5; 14 de ellos aceptaron enrolarse para tratamiento con insulina parenteral o control (7 en cada grupo) y al cabo de 7 años de seguimiento han desarrollado la enfermedad 3 de 7 en el grupo con insulina y 6 de 7 en el grupo control, lo que sugiere que la insulinoprofilaxis permite dilatar el inicio de la enfermedad en parientes de primer grado con alto riesgo de desarrollar diabetes. Este y otros estudios motivaron a los investigadores en USA a iniciar un ensayo clínico aleatorio multicéntrico y controlado denominado Diabetes Prevention Trial of Type 1 Diabetes (DPT-1), el cual ha reclutado mas de 80 000 participantes menores de 45 años. Existe un estudio similar en Europa, que solo incluye niños, denominado European Paediatric Prediabetes Subcutaneous Insulin Trial (EPP-SCIT). En el DPT-1 los sujetos con ICA positivos son sometidos a una prueba para determinar la primera fase de secreción de insulina en respuesta a la administración de glucosa endovenosa (FPRI) y subclasificados como de riesgo alto (ICA positivo mayor de 20 JDF y FPRI menor al percentil 10 de la población de referencia), los que tienen mas del 50% de riesgo de desarrollar la enfermedad antes de 5 años o aquellos de riesgo intermedio que tienen ICA positivos pero FPRI normal, cuyo riesgo se estima entre 25-50%. Los primeros tienen un protocolo de intervención con dosis bajas de insulina parenteral (0,1 u/kg/día) y los de menor riesgo se les administra insulina oral, como agente de tolerancia inmunológica. Este estudio debe reclutar 340 pacientes en la cohorte de alto riesgo y 490 en la de riesgo intermedio. El reclutamiento para la cohorte de alto riesgo se inició en 1994 y está casi completo; el enrolamiento del grupo de riesgo intermedio empezó 2 años más tarde y falta enrolar a 200 participantes. Como casi el 96% de los participantes tienen ICA negativos y no son elegibles como candidatos, miles de voluntarios se siguen sometiendo al screening hasta que las metas sean cumplidas. Los primeros resultados de este estudio se esperan para el año 2003 ó 2004.

Lo que ya se ha realizado son estudios de aceptación. En uno retrospectivo semiestructurado realizado por entrevista telefónica en 28 de 31 familias que participan de un estudio de insulinoprofilaxis parenteral, tanto el afectado como su familia refieren haberlo tolerado bien. Los participantes se muestran entusiasmados y recomiendan el tratamiento para otras personas susceptibles; sin embargo, 58% de los niños y 38% de los adultos reportaron hipoglucemias leves. Si bien estos estudios no incluyen niños menores sobre 3 años con ICA(+), existen reportes aislados del uso de insulina preventiva en lactantes y preescolares, con buenos resultados en 2 gemelos ICA(+) que retrasaron 6 años el debut con respecto a sus hermanos, sin presentar efectos colaterales importantes durante el tratamiento.

La nicotinamida ha demostrado ser un medicamento que promueve la regeneración de las células beta en modelos animales de diabetes espontánea o inducida. Si es administrada antes del comienzo de los síntomas previene la diabetes tipo 1 en animales de experimentación. Esta vitamina (B3) es capaz de proteger las células beta contra insultos inflamatorios y la destrucción autoin-

mune, a través de inhibir la activación de los macrófagos y de las citoquinas y aumentar la captación de radicales libres. El estudio original de Elliot y cols demostró que el empleo de nicotinamida en dosis entre 1-3 g/ día fue capaz de prevenir la aparición de DM1 en 13 de 14 niños ICA(+), parientes de primer grado de un DM1, seguidos por 30 meses, mientras que los 8 controles pareados desarrollaron la enfermedad. A raíz de estos resultados se iniciaron dos estudios multicéntricos grandes en Europa llamados ENDIT (Europa) y DENIS (Alemania). En el protocolo europeo (ENDIT) se han estudiado mas de 40 000 parientes de primer grado de DM1 (padres, hijos o hermanos), de los cuales 550 que tenían ICA(+) (> de 20 unidades JDF) fueron asignados aleatoriamente para ser tratados con nicotinamida o placebo. Sus resultados se esperan para el año 2003. Los únicos resultados disponibles en este momento son los del estudio alemán (DENIS) que utilizó aleatoriamente 1,2 g/m² de nicotinamida o placebo en hermanos de DM1 entre 3 a 12 años de edad con ICA(+). observando que la incidencia de DM1 fue similar en ambos grupos con un periodo de observación cercano a 3 años. Ellos concluyeron que en grupos de alto riesgo de desarrollar la enfermedad la nicotinamida no fue útil en prevenirla; a pesar que reconocen que no consideraron la FPRI para separar los grupos. Sin embargo, un metanálisis de la literatura existente sugiere un posible efecto en particular en términos de preservación de la célula beta; por esta razón y dado que es un medicamento de bajo costo, fácil administración y escasos efectos colaterales, se están actualmente esperando los resultados del estudio multicéntrico europeo ENDIT, que pueden estar disponibles el 2003. También en Chile el grupo de la Universidad Católica ha realizado una estudio similar, detectando ICA(+) en 30 de 1 021 parientes de primer grado estudiados; en 24 de ellos se realizó FPRI, que resultó anormal en 19/24 sujetos que actualmente reciben nicotinamida.

Existen fundadas esperanzas que estos 2 grandes estudios prospectivos de largo plazo con intervenciones preventivas nos ayudarán a responder la pregunta si es posible alterar el destino biológico de nuestros pacientes y prevenir o retardar el comienzo de la diabetes tipo 1 en poblaciones susceptibles.

PERSPECTIVAS FUTURAS

Posiblemente en un futuro próximo la estimación del riesgo se hará midiendo además de los ICA una combinación de anticuerpos como antiinsulina (IAA), antiGAD65 o anticuerpo asociado a insulinoma (IA-2A), obviando así el test endovenoso. En relación con nuevos tratamientos preventivos, además de la insulina parenteral y oral, se ha usado como antígeno insulina nasal, así como análogos inactivos de insulina (cadena beta de insulina, b25-Aspartato, Diapep 277) y GAD; todos los cuales han sido probados con éxito en ratas NOD.

Otra línea de investigación usada más bien en DM1 recién diagnosticados y que podría pasar a la línea de prevención, son los anticuerpos monoclonales que actúan directamente contra moléculas del sistema inmune que incluyen antiCD-3 humanizados, los cuales suprimen la respuesta inmune a través de una depleción transitoria de células T, así como interferón alfa o el uso de daclizumab, droga que corresponde a un anticuerpo murino humanizado para el receptor de IL-2. Tiene escasos efectos colaterales y ha sido usado con éxito en trasplante renal en pediatría.

Por otra parte la vacuna con insulina cadena beta fue efectiva en impedir la aparición de diabetes en ratas NOD. Por último, algunos tratamientos con antígenos no específicos como el bacilo BCG pueden estimular el sistema inmune y disminuir el desarrollo de diabetes, es posible que se desarrollen otros antígenos más efectivos en el futuro.

RECOMENDACIÓN DE ESTUDIO Y TRATAMIENTO DE HERMANOS DE PACIENTES CON DM1 HOY

Es lógico que la familia esté enterada del riesgo de su hijo de desarrollar diabetes, y por lo tanto aconsejaría realizar en todos ellos una determinación de ICA con una periodicidad no superior a 5 años. En aquellos con ICA positivos por dos veces consecutivas se debiera realizar la FPRI para determinar su riesgo más exactamente. Establecido este, se debe conversar con la familia acerca de lo aquí expuesto. Hasta que se conozcan los resultados de los trabajos en curso, lo más lógico parece optar entre no realizar tratamiento alguno o tratar con nicotinamida o insulina oral si se dispone de

ella, siendo muy cuidadoso de no dar falsas expectativas a los pacientes y sus padres. Solo en familias muy fuertemente motivadas y de común acuerdo con ellos se podría preferir el tratamiento con insulina parenteral, en dosis bajas, vigilando muy estrechamente la aparición de hipoglicemias; sin embargo, este parece un tratamiento agresivo, sobre todo después que recientes publicaciones ponen en duda su eficacia, por lo que en general no es recomendable.

REFERENCIAS

- Treatment of prediabetic patients with insulin: Experience and future. European Prediabetes Study Group Carel JC, Bougneres PF. Horm Res 1996; 4 (Suppl 1): 44-7.
- Sabbah E, Savola K, Ebeling T: et al: Genetic, autoimmune, and clinical characteristics of childhood and adult-onset type 1 diabetes. Diabetes Care 2000; 23: 1326-32.
- Kolb H, Worz-Pagenstert U, Kleemann R, et al: Effects
 of insulin administration in a group of high-risk, nondiabetic, first-degree relatives of type 1 diabetic patients: An open pilot trial. Diabet Med 1999; 16: 160-3.
- Nielsen K, Karlsen AE, Deckert M, et al: Beta-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes 1999; 48: 2324-32.
- Bougneres PF, Landais P, Boisson C, et al: Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes. 1990; 39: 1264-72.
- Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR: T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 1999; 12: 121-9.
- Chatenoud L, Thervet E, Primo J, Bach JF: Anti-CD3 antibody induces long-term remission of over autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 1994; 91: 123-7.
- Bonfanti R, Bazzigaluppi E, Calori G, et al: Parameters associated with residual insulin secretion during the first year of disease in children and adolescents with Type 1 diabetes mellitus. Diabet Med 1998; 15: 844-50.
- Hanninen A, Harrison LC: Gamma delta T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol Rev 2000; 173: 109-19.
- Julius MC, Schatz DA, Silverstein JH: The prevention of type I diabetes Mellitus. Pediatr Ann 1999; 28: 585-8.
- Hypponem E, Virtamen SM, Kenward MG et al. The Childhood Diabetes in Finland Study Group. Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 2000; 23: 1755-60.
- Song HY, Abad MM, Mahoney CP, McEvoy RC: Human insulin B chain but not A chain decreases the rate of diabetes in BB rats. Diabetes Res Clin Pract 1999; 46: 109-14.
- Greenbaum CJ, Schatz DA, Cuthbertson D, et al: The presence of human leukocyte antigen (HLA) haplotype DQA1*0102, DQB1*0602 is associated with protection from type 1 diabetes. J Clin Endocrinol Metab 2000; 85: 1255-60.

- Ramiya VK, Shang XZ, Wasserfall CH, Maclaren NK: Effect of oral and intravenous insulin and glutamic acid decarboxylase in NOD mice. Autoimmunity 1997; 26: 139-51.
- Rosenbloom AL, Schatz DA, Krischer JP, et al: Therapeutic controversy: prevention and treatment of diabetes in children. J Clin Endocrinol Metab 2000; 85: 494-522.
- Elliot RB, Pilcher CC, Stewart A, et al: The use of nicotinamide treatment in the prevention of type 1 diabetes. Ann NY Acad Sci 1993; 696: 333-341.
- Keller RJ, Eisebarth GS, Jackson RA: Insulin prophylaxis in individuals at high-risk of type 1 diabetes. Lancet 1993; 341: 927-8.
- Pozzilli P, Browne PD, Kolb H: Meta-analysis of nicotinamide treatment in patients with recent-onset IDDM. The nicotinamide triatlist. Diabetes Care 1996; 19: 1357-63.
- Rabinovich A, Skyler JS: Prevention of type 1 diabetes. Med Clin North Am 1998; 82: 739-55.
- Ramiya VK, Shang XZ, Wasserfall CH, Maclaren NK: Effect of oral and intravenous insulin and glutamic acid decarboxylase in NOD mice. Autoimmunity 1997; 26: 139-51.
- 21. Tercyak KP, Johnson SB, Schatz DA: Patient and family reflections on the use of subcutaneous insulin to pre-

- vent diabetes: a retrospective evaluation from a pilot prevention trial. J Diabetes Complications 1998; 12: 279-86.
- 22. Kolb H, Worz-Pagenstert U, Kleemann R, et al: Effects of insulin administration in a group of high-risk, non-diabetic, first-degree relatives of type 1 diabetic patients: an open pilot trial Diabet Med 1999; 16: 160-3.
- Tercyak KP, Johnson SB, Schatz DA: Patient and family reflections on the use of subcutaneous insulin to prevent diabetes: a retrospective evaluation from a pilot prevention trial. J Diabetes Complications 1998; 12: 279-86.
- Karounos DG, Bryson JS, Cohen DA: Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice. J Clin Invest 1997; 100: 1344-8.
- 25. Fuchtenbusch M, Rabl W, Grassl B, et al: Parenteral antigen administration: the schwabing insulin prophylaxis pilot trial. Diabetologia 1998; 41: 536-41.
- Maiz A, Manrique M, Hodgson I, et al: Prevalence of islet cell antibodies among 1021 relatives of type 1 diabetics. Rev Med Chil 1999; 127: 515-22.
- Peter Chase H, Cuthbertson D, Dolan M et al: Firstphase insilin release during the intravenous glucose tolerance test as a risk factor for type 1 diabetes. J Pediatr 2001; 138: 244-9.

Conventillo en Valparaíso, a fines del siglo XIX y comienzos del XX. Este ambiente permite explicar la mortalidad infantil prevalente en la época: desconocida en su número exacto, pero probablemente sobre 300 por mil. La cifra era una de las más altas del mundo. Aporte Dr. Nelson A. Vargas C. Proyecto Crónica de una alegría: *Historia de la Pediatría Chilena*. Auspiciado

por Nestlé Chile. S.A.